Fuzzy c-means in High Dimensional Spaces
نویسندگان
چکیده
High dimensions have a devastating effect on the FCM algorithm and similar algorithms. One effect is that the prototypes run into the centre of gravity of the entire data set. The objective function must have a local minimum in the centre of gravity that causes FCM’s behaviour. In this paper, examine this problem. This paper answers the following questions: How many dimensions are necessary to cause an ill behaviour of FCM? How does the number of prototypes influence the behaviour? Why has the objective function a local minimum in the centre of gravity? How must FCM be initialised to avoid the local minima in the centre of gravity? To understand the behaviour of the FCM algorithm and answer the above questions, the authors examine the values of the objective function and develop three test environments that consist of artificially generated data sets to provide a controlled environment. The paper concludes that FCM can only be applied successfully in high dimensions if the prototypes are initialized very close to the cluster centres.
منابع مشابه
Fuzzy c-Means Clustering Using Transformations into High Dimensional Spaces
Algorithms of fuzzy -means clustering with kernels employed in nonlinear transformations into high dimensional spaces in the support vector machines are studied. The objective functions in the standard method and the entropy based method are considered and iterative solutions in the alternate optimization algorithm are derived. Explicit cluster centers in the data space are not obtained by this...
متن کاملSOME RESULTS ON INTUITIONISTIC FUZZY SPACES
In this paper we define intuitionistic fuzzy metric and normedspaces. We first consider finite dimensional intuitionistic fuzzy normed spacesand prove several theorems about completeness, compactness and weak convergencein these spaces. In section 3 we define the intuitionistic fuzzy quotientnorm and study completeness and review some fundamental theorems. Finally,we consider some properties of...
متن کاملGeneralizations of Fuzzy C-Means Algorithm to Granular Feature Spaces, based on Underlying Metrics: Issues and Related Works
This paper considers dissimilarity measures and clustering techniques for two special cases of set-defined objects: fuzzy granules and subsequence time series. To deal with clustering of such kind of objects, we propose two implementations that generalize the Fuzzy C-Means algorithm to granular feature spaces. Granular computing is a paradigm oriented towards capturing and processing meaningful...
متن کاملFast fuzzy clustering
This paper presents a multistage random sampling fuzzy c-means based clustering algorithm, which signi cantly reduces the computation time required to partition a data set into c classes. A series of subsets of the full data set are used for classi cation in order to provide an approximation to the nal cluster centers. The quality of the nal partitions is equivalent to that of fuzzy c-means. Th...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJFSA
دوره 1 شماره
صفحات -
تاریخ انتشار 2011