Large deviations of infinite intersections of events in Gaussian processes
نویسنده
چکیده
The large deviations principle for Gaussian measures in Banach space is given by the generalized Schilder's theorem. After assigning a norm ||f|| to paths f in the reproducing kernel Hilbert space of the underlying Gaussian process, the probability of an event A can be studied by minimizing the norm over all paths in A. The minimizing path f*, if it exists, is called the most probable path and it determines the corresponding exponential decay rate. The main objective of our paper is to identify the most probable path for the class of sets A that are such that the minimization is over a closed convex set in an infinite-dimensional Hilbert space. The `smoothness' (i.e., mean-square differentiability) of the Gaussian process involved has a crucial impact on the structure of the solution. Notably, as an example of a non-smooth process, we analyze the special case of fractional Brownian motion, and the set A consisting of paths f at or above the line t in [0,1]. For H>1/2, we prove that there is an s such that 0<s<1/2 and that the optimum path is at the "diagonal" on [0,s] and at t=1, whereas it is strictly above the diagonal for on (s,1); for H<1/2 an analogous result is derived. For smooth processes, such as integrated Ornstein-Uhlenbeck, f* has an essentially different nature, and is found by imposing conditions also on the derivatives of the path. 2000 Mathematics Subject Classification: 60G15, 60K25, 60F10
منابع مشابه
Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملLarge deviations for Gaussian diffusions with delay
Dynamical systems driven by nonlinear delay SDEs with small noise can exhibit important rare events on long timescales. When there is no delay, classical large deviations theory quantifies rare events such as escapes from nominally stable fixed points. Near such fixed points one can approximate nonlinear delay SDEs by linear delay SDEs. Here, we develop a fully explicit large deviations framewo...
متن کاملExtended and infinite ordered weighted averaging and sum operators with numerical examples
This study discusses some variants of Ordered WeightedAveraging (OWA) operators and related information aggregation methods. Indetail, we define the Extended Ordered Weighted Sum (EOWS) operator and theExtended Ordered Weighted Averaging (EOWA) operator, which are applied inscientometrics evaluation where the preference is over finitely manyrepresentative works. As...
متن کاملSample Path Large Deviations for Squares of Stationary Gaussian Processes
In this paper, we show large deviations for random step functions of type
متن کاملThe effect of memory on functional large deviations of infinite moving average processes
Abstract The large deviations of an infinite moving average process with exponentially light tails are very similar to those of an i.i.d. sequence as long as the coefficients decay fast enough. If they do not, the large deviations change dramatically. We study this phenomenon in the context of functional large, moderate and huge deviation principles.
متن کامل