High-order fundamental and general solutions of convection-diffusion equation and their applications with boundary particle method

نویسنده

  • W. Chen
چکیده

In this study, we presented the high-order fundamental solutions and general solutions of convection-diffusion equation. To demonstrate their efficacy, we applied the highorder general solutions to the boundary particle method (BPM) for the solution of some inhomogeneous convection-diffusion problems, where the BPM is a new truly boundaryonly meshfree collocation method based on multiple reciprocity principle. For the sake of completeness, the BPM is also briefly described here. Keyword: convection-diffusion equation, high-order fundamental solution; high-order general solution; boundary particle method; radial basis function; meshfree; multiple reciprocity method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of Convection-Diffusion equations with memory term based on sinc method

‎In this paper‎, ‎we study the numerical solution of Convection-Diffusion equation with a memory term subject to initial boundary value conditions‎. ‎Finite difference method in combination with product trapezoidal integration rule is used to discretize the equation in time and sinc collocation method is employed in space‎. ‎The accuracy and error analysis of the method are discussed‎. ‎Numeric...

متن کامل

Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems

This paper concerns a numerical study of convergence properties of the boundary knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. The BKM is a new boundary-type, meshfree radial function basis collocation technique. The method differentiates from the method of fundamental solutions (MFS) in that it does not need ...

متن کامل

Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems with complicated geometry

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controve...

متن کامل

Insight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method

This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...

متن کامل

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.CE/0206013  شماره 

صفحات  -

تاریخ انتشار 2002