On Genetic Programming of Fuzzy Rule-Based Systems for Intelligent Control
نویسندگان
چکیده
Fuzzy logic and evolutionary computation have proven to be convenient tools for handling real-world uncertainty and designing control systems, respectively. An approach is presented that combines attributes of these paradigms for the purpose of developing intelligent control systems. The potential of the genetic programming paradigm (GP) for learning rules for use in fuzzy logic controllers (FLCs) is evaluated by focussing on the problem of discovering a controller for mobile robot path tracking. Performance results of incomplete rule-bases compare favorably to those of a complete FLC designed by the usual trial-and-error approach. A constrained syntactic representation supported by structure-preserving genetic operators is also introduced.
منابع مشابه
ارائهروش جدید مبتنیبر برنامهنویسی ژنتیک برای وزندهی قوانین فازی در طبقهبندی نامتوازن
In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...
متن کاملGenetic Programming of Fuzzy Coordination Behaviors for Mobile Robots
Intelligent robot navigation can be achieved using a control system comprised of a collection of special-purpose motion routines, or behaviors. An approach to behavior coordination in multi-behavior systems is described with emphasis on evolution of fuzzy coordination rules using the genetic programming (GP) paradigm. Both conventional GP and steady-state GP are applied to evolve a fuzzy-behavi...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملPii: S0045-7906(99)00027-0
Neural networks (NN), genetic algorithms (GA), and genetic programming (GP) are augmented with fuzzy logic-based schemes to enhance arti®cial intelligence of automated systems. Such hybrid combinations exhibit added reasoning, adaptation, and learning ability. In this expository article, three dominant hybrid approaches to intelligent control are experimentally applied to address various roboti...
متن کاملDecision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures
In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 2 شماره
صفحات -
تاریخ انتشار 1996