Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes.
نویسندگان
چکیده
Brain cells are continuously exposed to corticosteroid hormones, although the levels vary (e.g., after stress). Corticosteroids alter neural activity via two receptor types, mineralocorticoid (MR) and glucocorticoid receptors (GR). These receptors regulate gene transcription but also, as we now know, act nongenomically. Via nongenomic pathways, MRs enhance and GRs suppress neural activity. In the hypothalamus, inhibitory GR effects contribute to negative feedback regulation of the stress axis. Nongenomic MR actions are also important extrahypothalamically and help organisms to immediately select an appropriate response strategy. Via genomic mechanisms, corticosteroid actions in the basolateral amygdala and ventral-most part of the cornu ammonis 1 hippocampal area are generally excitatory, providing an extended window for encoding of emotional aspects of a stressful event. GRs in hippocampal and prefrontal pyramidal cells increase surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and strengthen glutamatergic signaling through pathways partly overlapping with those involved in long-term potentiation. This raises the threshold for subsequent induction of synaptic potentiation and promotes long-term depression. Synapses activated during stress are thus presumably strengthened but protected against excitatory inputs reaching the cells later. This restores higher cognitive control and promotes, for example, consolidation of stress-related contextual information. When an organism experiences stress early in life or repeatedly in adulthood, the ability to induce synaptic potentiation is strongly reduced and the likelihood to induce depression enhanced, even under rest. Treatment with antiglucocorticoids can ameliorate cellular effects after chronic stress and thus provide an interesting lead for treatment of stress-related disorders.
منابع مشابه
Lateral Hypothalamus Corticotropin Releasing Hormone Receptor-1 Inhibition Modulates Stress- Induced Anxiety Behavior
Stress is a reaction to unwanted events disturbing body homeostasis which influences its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA) orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH receptor type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and t...
متن کاملChanges of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders
Background: An electroencephalogram (EEG) is an accepted method in neurophysiology with a wide application. Different types of brain rhythms indicate that simultaneous activity of the brain cortex neurons depend on the person’s mental state. Method: we have focus on reviewing the existing literature pertaining to changes of the brain’s bioelectrical activity that recorded from the ...
متن کاملApproach to Chronic Secondary Headache: A Case report on Unusual Drug Side Effects
In this article, we present the case of a 12-year-old female child who complained of bilateral temporal and frontal headache for 2 to 3 months with nausea and vomiting. Physical examination revealed right-sided sixth cranial nerve palsy and papilledema in ophthalmoscopy. To find the cause of increased intracranial pressure, the patient underwent brain imaging and brain MRI showed no abnormality...
متن کاملTime-dependent corticosteroid modulation of prefrontal working memory processing.
Corticosteroids are potent modulators of human higher cognitive function. They are released in response to stress, and are thought to be involved in the modulation of cognitive function by inducing distinct rapid nongenomic, and slow genomic changes, affecting neural plasticity throughout the brain. However, their exact effects on the neural correlates of higher-order cognitive function as perf...
متن کاملThe effects of acute, sub-chronic and chronic psychical stress on the brain electrical activity in male rats
Introduction: Stress is a main factor influencing brain functions as revealed by the electroencephalogram (EEG) recordings. Moreover, different stress durations seemingly cause perturbations in brain waves and lead to mental disorders. This study investigates the effects of acute, sub-chronic and chronic stress on EEG in rats. Methods: Twenty-eight Wistar adult male rats were randomly all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmacological reviews
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2012