A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN]
نویسندگان
چکیده
Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.
منابع مشابه
A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status.
Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morni...
متن کاملLong-term hydraulic acclimation to soil texture and radiation load in cotton
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture ...
متن کاملSpatial distributions of expansion rate, cell division rate and cell size in maize leaves: a synthesis of the effects of soil water status, evaporative demand and temperature.
The spatial distributions of leaf expansion rate, cell division rate and cell size was examined under contrasting soil water conditions, evaporative demands and temperatures in a series of experiments carried out in either constant or naturally fluctuating conditions. They were examined in the epidermis and all leaf tissues. (1) Meristem temperature affected relative elongation rate by a consta...
متن کاملA MODELLING APPROACH TO GENOTYPE × ENVIRONMENT INTERACTION Genetic analysis of the response of maize growth to environmental conditions
Expansive growth of organs has a very large genotype × environment (G×E) interaction. Maximum leaf expansion rate observed in the absence of stress and of evaporative demand has a genetic variability which is usually smaller than environmental effects. The mechanisms driving the reduction in leaf growth rate under stress, namely changes in cell division rate, in cell-wall mechanical properties ...
متن کاملAquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration.
Root hydraulic conductivity in plants (Lp(r)) exhibits large variations in response to abiotic stimuli. In this study, we investigated the impact of dynamic, aquaporin-mediated changes of Lp(r) on leaf growth, water potential, and water flux throughout the plant. For this, we manipulated Lp(r) by subjecting roots to four independent treatments, with aquaporin inhibitors applied either to transp...
متن کامل