Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging

نویسندگان

  • Stephan Reichelt
  • Norbert Leister
چکیده

In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal’s viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging Stephan Reichelt and Norbert Leister Direct Optical Fringe Writing of Diffraction Specific Coherent Panoramagrams in Photorefractive Polymer for Updatable Three-Dimensional Holographic Display

Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main...

متن کامل

Real-time phase-only color holographic video display system using LED illumination.

A real-time full-color phase-only holographic display system generates holograms of 3D objects. The system includes a 3D object formed by voxels, an internet-based transmission capability that transmits the object information to the server, a real-time hologram generation unit, and a holographic display unit with incoherent illumination. The server calculates three phase holograms for RGB compo...

متن کامل

Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique

Holographic display is capable of reconstructing the whole optical wave field of a three-dimensional (3D) scene. It is the only one among all the 3D display techniques that can produce all the depth cues. With the development of computing technology and spatial light modulators, computer generated holograms (CGHs) can now be used to produce dynamic 3D images of synthetic objects. Computation ho...

متن کامل

Optimization of Hologram Computation for Real-Time Display

Several methods of increasing the speed and simplicity of the computation of off-axis transmission holograms are presented, with applications to the real-time display of holographic images. A bipolar intensity approach enables a linear summation of interference fringes, a factor of two speed increase, and the elimination of image noise caused by object self-interference. An order of magnitude s...

متن کامل

Computer Generated Holograms from 3D Meshes using an Analytic Light Transport Model

1 We present a method to analytically compute the light distribution of triangles directly in frequency space. This allows for fast evaluation, shading and propagation of light from 3D mesh objects using angular spectrum methods. The algorithm complexity is only dependant on the hologram resolution and the polygon count of the 3D model. In contrast to other polygon based computer generated holo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012