Using Syntax-Based Machine Translation to Parse English into Abstract Meaning Representation

نویسندگان

  • Michael Pust
  • Ulf Hermjakob
  • Kevin Knight
  • Daniel Marcu
  • Jonathan May
چکیده

We present a parser for Abstract Meaning Representation (AMR). We treat Englishto-AMR conversion within the framework of string-to-tree, syntax-based machine translation (SBMT). To make this work, we transform the AMR structure into a form suitable for the mechanics of SBMT and useful for modeling. We introduce an AMR-specific language model and add data and features drawn from semantic resources. Our resulting AMR parser improves upon state-of-the-art results by 7 Smatch points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parsing English into Abstract Meaning Representation Using Syntax-Based Machine Translation

We present a parser for Abstract Meaning Representation (AMR). We treat Englishto-AMR conversion within the framework of string-to-tree, syntax-based machine translation (SBMT). To make this work, we transform the AMR structure into a form suitable for the mechanics of SBMT and useful for modeling. We introduce an AMR-specific language model and add data and features drawn from semantic resourc...

متن کامل

Uniication-based Glossing

We present an approach to syntax-based machine translation that combines uniication-style interpretation with statistical processing. This approach enables us to translate any Japanese newspaper article into English, with quality far better than a word-for-word translation. Novel ideas include the use of feature structures to encode word lattices and the use of uniication to compose and manipul...

متن کامل

Unification-Based Glossing

We present an approach to syntax-based machine translation that combines uniication-style interpretation with statistical processing. This approach enables us to translate any Japanese newspaper article into English, with quality far better than a word-for-word translation. Novel ideas include the use of feature structures to encode word lattices and the use of uniication to compose and manipul...

متن کامل

Syntax-based Rewriting for Simultaneous Machine Translation

Divergent word order between languages causes delay in simultaneous machine translation. We present a sentence rewriting method that generates more monotonic translations to improve the speedaccuracy tradeoff. We design grammaticality and meaning-preserving syntactic transformation rules that operate on constituent parse trees. We apply the rules to reference translations to make their word ord...

متن کامل

Statistical Translation Model Based On Source Syntax Structure

Syntax-based statistical translation model is proved to be better than phrasebased model, especially for language pairs with very different syntax structures, such as Chinese and English. In this talk I will introduce a serial of statistical translation models based on source syntax structure. The tree-based model uses the one best syntax tree for translation. The forest-based model uses a comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.06665  شماره 

صفحات  -

تاریخ انتشار 2015