Genetic and biochemical modulation of sialic acid O-acetylation on group B Streptococcus: phenotypic and functional impact.
نویسندگان
چکیده
Group B Streptococcus (GBS) is an important human pathogen and a model system for studying the roles of bacterial glycosylation in host-microbe interactions. Sialic acid (Sia), expressed prominently in the GBS capsular polysaccharide (CPS), mimics mammalian cell surface Sia and can interact with host Sia-binding proteins to subvert immune clearance mechanisms. Our earlier work has shown that GBS partially O-acetylates CPS Sia residues and employs an intracellular O-acetylation/de-O-acetylation cycle to control the final level of this surface Sia modification. Here, we examine the effects of point mutations in the NeuD O-acetyltransferase and NeuA O-acetylesterase on specific glycosylation phenotypes of GBS, pinpointing an isogenic strain pair that differs dramatically in the degree of the O-acetyl modification (80% versus 5%) while still expressing comparable levels of overall sialylation. Using these strains, higher levels of O-acetylation were found to protect GBS CPS Sia against enzymatic removal by microbial sialidases and to impede engagement of human Siglec-9, but not to significantly alter the ability of GBS to restrict complement C3b deposition on its surface. Additional experiments demonstrated that pH-induced migration of the O-acetyl modification from the 7- to 9-carbon position had a substantial impact on GBS-Siglec-9 interactions, with 7-O-acetylation exhibiting the strongest interference. These studies show that both the degree and position of the GBS O-acetyl modification influence Sia-specific interactions relevant to the host-pathogen relationship. We conclude that native GBS likely expresses a phenotype of intermediate Sia O-acetylation to strike a balance between competing selective pressures present in the host environment.
منابع مشابه
O-Acetylation of sialic acid on Group B Streptococcus inhibits neutrophil suppression and virulence.
GBS (Group B Streptococcus) requires capsular Sia (sialic acid) for virulence and partially modifies this sugar by O-acetylation. In the present paper we describe serotype-specific patterns of GBS Sia O-acetylation that can be manipulated by genetic and biochemical means. In vitro and in vivo assays demonstrate that this subtle modification attenuates GBS Sia-mediated neutrophil suppression and...
متن کاملNeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase ...
متن کاملDiscovery and characterization of sialic acid O-acetylation in group B Streptococcus.
Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac resi...
متن کاملGroup B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes.
Group B Streptococcus (GBS) is classified into nine serotypes that vary in capsular polysaccharide (CPS) architecture but share in common the presence of a terminal sialic acid (Sia) residue. This position and linkage of GBS Sia closely resembles that of cell surface glycans found abundantly on human cells. CD33-related Siglecs (CD33rSiglecs) are a family of Sia-binding lectins expressed on hos...
متن کاملStable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation.
With dimethyl sulphoxide instead of butanol in the thiobarbituric acid assay for sialic acid, a non-fading chromophore with lambdamax. = 549 nm was produced in a homogeneous solution, allowing dilution of the test mixture in case of high colour yield. This test adapted well to studies on alkaline de-O-acetylation. Bovine and rat submaxillary mucins, and rabbit Tamm-Horsfall urinary sialoprotein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2009