New Frobenius Structures on Hurwitz Spaces in Terms of Schiffer and Bergmann Kernels

نویسنده

  • Vasilisa SHRAMCHENKO
چکیده

New family of flat potential (Darboux–Egoroff) metrics on the Hurwitz spaces and corresponding Frobenius structures are found. We consider a Hurwitz space as a real manifold. Therefore the number of coordinates is twice as big as the number of coordinates used in the construction of Frobenius structure on Hurwitz spaces found by B. Dubrovin more than 10 years ago. The branch points of a ramified covering and their complex conjugates play the role of canonical coordinates on the constructed Frobenius manifolds. We introduce a new family of Darboux–Egoroff metrics in terms of the Schiffer and Bergmann kernels, find corresponding flat coordinates and a prepotential of associated Frobenius manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Real doubles” of Hurwitz Frobenius manifolds

New family of flat potential (Darboux-Egoroff) metrics on the Hurwitz spaces and corresponding Frobenius structures are found. We consider a Hurwitz space as a real manifold. Therefore the number of coordinates is twice as big as the number of coordinates used in the construction of Frobenius manifolds on Hurwitz spaces found by B.Dubrovin more than 10 years ago. The branch points of a ramified...

متن کامل

Riemann-Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces: irregular singularity

Solutions to the Riemann-Hilbert problems with irregular singularities naturally associated to semisimple Frobenius manifold structures on Hurwitz spaces (moduli spaces of meromorphic functions on Riemann surfaces) are constructed. The solutions are given in terms of meromorphic bidifferentials defined on the underlying Riemann surface. The relationship between different classes of Frobenius ma...

متن کامل

Isomonodromic Tau-Function of Hurwitz Frobenius Manifolds and Its Applications

In this work we find the isomonodromic (Jimbo-Miwa) tau-function corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss several applications of this result. First, we get an explicit expression for the G-function (solution of Getzler’s equation) of the Hurwitz Frobenius manifolds. Second, in terms of this tau-function we compute the genus one correction to the free energy ...

متن کامل

On G-function of Frobenius manifolds related to Hurwitz spaces

Abstract. The semisimple Frobenius manifolds related to the Hurwitz spaces Hg,N(k1, . . . , kl) are considered. We show that the corresponding isomonodromic tau-function τI coincides with (−1/2)power of the Bergmann tau-function which was introduced in a recent work by the authors [8]. This enables us to calculate explicitly the G-function of Frobenius manifolds related to the Hurwitz spaces H0...

متن کامل

1 / N 2 correction to free energy in hermitian two - matrix model

Using the loop equations we find an explicit expression for genus 1 correction in hermitian two-matrix model in terms of holomorphic objects associated to spectral curve arising in large N limit. Our result generalises known expression for F 1 in hermitian one-matrix model. We discuss the relationship between F 1 , Bergmann tau-function on Hurwitz spaces, G-function of Frobenius manifolds and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004