Buffed energy landscapes: another solution to the kinetic paradoxes of protein folding.

نویسندگان

  • Steven S Plotkin
  • Peter G Wolynes
چکیده

The energy landscapes of proteins have evolved to be different from most random heteropolymers. Many studies have concluded that evolutionary selection for rapid and reliable folding to a given structure that is stable at biological temperatures leads to energy landscapes having a single dominant basin and an overall funnel topography. We show here that, although such a landscape topography is indeed a sufficient condition for folding, another possibility also exists, giving a previously undescribed class of foldable sequences. These sequences have landscapes that are only weakly funneled in the conventional thermodynamic sense but have unusually low kinetic barriers for reconfigurational motion. Traps have been specifically removed by selection. Here we examine the possibility of folding on these "buffed" landscapes by mapping the determination of statistics of pathways for the heterogeneous nucleation processes involved in escaping from traps to the solution of an imaginary time Schroedinger equation. This equation is solved analytically in adiabatic and "soft-wall" approximations, and numerical results are shown for the general case. The fraction of funneled vs. buffed proteins in sequence space is estimated, suggesting the statistical dominance of the funneling mechanism for achieving foldability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins.

Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and s...

متن کامل

Free-energy landscapes of proteins in solution by generalized-ensemble simulations.

Free-energy landscapes of proteins in solution are essential for understanding molecular mechanism of protein folding, stability, and dynamics. Because of the multiple-minima problem (or quasi-ergodicity problem), the conventional molecular dynamics or Monte Carlo methods cannot provide the landscapes accurately at low temperatures. By contrast, the simulations based on the generalized-ensemble...

متن کامل

Modulation of folding energy landscape by charge-charge interactions: linking experiments with computational modeling.

The kinetics of folding-unfolding of a structurally diverse set of four proteins optimized for thermodynamic stability by rational redesign of surface charge-charge interactions is characterized experimentally. The folding rates are faster for designed variants compared with their wild-type proteins, whereas the unfolding rates are largely unaffected. A simple structure-based computational mode...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Protein folding intermediates and pathways studied by hydrogen exchange.

In order to solve the immensely difficult protein-folding problem, it will be necessary to characterize the barriers that slow folding and the intermediate structures that promote it. Although protein-folding intermediates are not accessible to the usual structural studies, hydrogen exchange (HX) methods have been able to detect and characterize intermediates in both kinetic and equilibrium mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 8  شماره 

صفحات  -

تاریخ انتشار 2003