Inhomogeneous Non-linear Diophantine Approximation

نویسندگان

  • V. V. BERESNEVICH
  • V. I. BERNIK
چکیده

Let be a strictly positive monotonically decreasing function deened on the set of positive integers. Given real numbers and , consider the solubility of the following two inequalities jq + pj < (q); (1) jq + p + j < (q) (2) for integers p and q. The rst problem is said to be homogeneous and the second inho-mogeneous (see 2]). The well known theorem of Khintchine 2, 4] asserts that for almost all 2 R in the sense of the Lebesgue measure, the inequality (1) has only nitely many solutions if the series 1 X k=1 (k) (3) converges (in which case need not be monotonic) and has innnitely many solutions if the series diverges. An analogous result is true for the inhomogeneous problem: given any real number , the inequality (2) holds for innnitely many q for almost no when the sum (3) converges and for almost all when the sum (3) diverges 6]. Thèdoubly metric case' in which one considersàlmost all' as well, is easier and holds without monotonicity (see 2, Chapter 7]). Schmidt's generalization 6] of the higher dimensional Khintchine-Groshev Theorem 7, pp. 28,33] includes the inhomogeneous case and implies that given y 2 R, the inequality ja n x n + + a 1 x + a 0 ? yj < H ?n+1 (H); (4) where H = maxfja n j; : : :; ja 0 jg, has only nitely or innnitely many integer solutions a 0 ; : : : ; a n for almost all x = (x 1 ; : : :x n) 2 R n according as the series (3) converges or diverges (the notation here diiers a little from that of 7]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exponents of Homogeneous and Inhomogeneous Diophantine Approximation

In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the inhomogeneous exponent of approximation to a generic point in R by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent...

متن کامل

Exponents of Inhomogeneous Diophantine Approximation

– In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the exponent of approximation to a generic point in R n by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent associate...

متن کامل

Inhomogeneous theory of dual Diophantine approximation on manifolds Dedicated to Bob Vaughan on his 65th birthday

The theory of inhomogeneous Diophantine approximation on manifolds is developed. In particular, the notion of nice manifolds is introduced and the divergence part of the Groshev type theory is established for all such manifolds. Our results naturally incorporate and generalize the homogeneous measure and dimension theorems for non-degenerate manifolds established to date. The results have natur...

متن کامل

Simultaneous inhomogeneous Diophantine approximation on manifolds

In 1998, Kleinbock & Margulis [KM98] established a conjecture of V.G. Sprindzuk in metrical Diophantine approximation (and indeed the stronger Baker-Sprindzuk conjecture). In essence the conjecture stated that the simultaneous homogeneous Diophantine exponent w0(x) = 1/n for almost every point x on a non-degenerate submanifold M of Rn. In this paper the simultaneous inhomogeneous analogue of Sp...

متن کامل

Metrical Theorems for Inhomogeneous Diophantine Approximation in Positive Characteristic

We consider inhomogeneous Diophantine approximation for formal Laurent series over a finite base field. We establish an analogue of a strong law of large numbers due to W. M. Schmidt with a better error term than in the real case. A special case of our result improves upon a recent result by H. Nakada and R. Natsui and completes a result of M. M. Dodson, S. Kristensen, and J. Levesley. Moreover...

متن کامل

A Note on Metric Inhomogeneous Diophantine Approximation

An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007