Discrete Interval–valued Choquet Integrals

نویسندگان

  • H. Bustince
  • J. Fernandez
چکیده

For a fixed finite universe U = {u1, . . . , un}, a fuzzy subset F of U is given by its membership function F : U → [0, 1] (we will not distinguish fuzzy subsets and the corresponding membership functions notations). For several practical purposes, especially in multicriteria decision making, the expected value E(F ) of F should be introduced. The original Zadeh approach in [11] was based on a probability measure P on U, P (ui) = pi, and then E(F ) = ∑n i=1 pi F (ui). More general approach, not limited by the non–interaction of single elements of U, is based on a fuzzy measure m : 2 → [0, 1], m(∅) = 0, m(U) = 1, m(A) ≤ m(B) whenever A ⊆ B ⊆ U and the Choquet integral [3, 4],

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY

The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

In this paper, using fuzzy complex valued functions and fuzzy complex valued fuzzy measures ([11]) and interval-valued Choquet integrals ([2-6]), we define Choquet integral with respect to a fuzzy complex valued fuzzy measure of a fuzzy complex valued function and investigate some basic properties of them.

متن کامل

Note on the Choquet Integral as an Interval-Valued Aggregation Operators and Their Applications

The concept of an interval-valued capacity is motivated by the goal to generalize a capacity, and it can be used for representing an uncertain capacity. In this paper, we define the discrete intervalvalued capacities, a measure of the entropy of a discrete interval-valued capacity, and, Choquet integral with respect to a discrete interval-valued capacity. In particular, we discuss the Choquet i...

متن کامل

SET - VALUED CHOQUET - PETTIS INTEGRALS Chun - Kee

In this paper, we introduce the Choquet-Pettis integral of set-valued mappings and investigate some properties and convergence theorems for the set-valued Choquet-Pettis integrals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012