Isolation and properties of fumarate reductase mutants of Escherichia coli.
نویسندگان
چکیده
Escherichia coli produces two enzymes which interconvert succinate and fumarate: succinate dehydrogenase, which is adapted to an oxidative role in the tricarboxylic acid cycle, and fumarate reductase, which catalyzes the reductive reaction more effectively and allows fumarate to function as an electron acceptor in anaerobic growth. A glycerol plus fumarate medium was devised for the selection of mutants (frd) lacking a functional fumarate reductase by virtue of their inability to use fumarate as an anaerobic electron acceptor. Most of the mutants isolated contained less than 1% of the parental fumarate reduction activity. Measurements of the fumarate reduction and succinate oxidation activities of parental strains and frd mutants after aerobic and anaerobic growth indicated that succinate dehydrogenase was completely repressed under anaerobic conditions, the assayable succinate oxidation activity being due to fumarate reductase acting reversibly. Fumarate reductase was almost completely repressed under aerobic conditions, although glucose relieved this repression to some extent. The mutations, presumably in the structural gene (frd) for fumarate reductase, were located at approximately 82 min on the E. coli chromosome by conjugation and transduction with phage P1. frd is very close to the ampA locus, and the order of markers in this region was established as ampA-frd-purA.
منابع مشابه
Study of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملStudy of Mutations in the DNA gyrase gyrA Gene of Escherichia coli
Quinolones are a large and widely consumed class of synthetic drugs. Expanded-spectrum quinolones, like ciprofloxacin are highly effective against Gram-negative bacteria, especially Escherichia coli. In E. coli the major target for quinolones is DNA gyrase. This enzyme is composed of two subunits, GyrA and GyrB encoding by gyrA and gyrB, respectively. Mutations in either of these genes cause qu...
متن کاملMutants of Escherichia coli K12 unable to use fumarate as an anaerobic electron acceptor.
Mutants of Escherichia coli K12 strain WGAS-GF+/LF+ were selected for their inability to use fumarate as terminal electron acceptor for supporting growth on glycerol or lactate in an atmosphere of H2 plus 5% CO2. Eighty-three mutants were grouped into seven different categories according to their ability to grow on different media and their ability to produce gas during glucose fermentation. En...
متن کاملExpression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملAnaerobic respiration of Escherichia coli in the mouse intestine.
The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 114 2 شماره
صفحات -
تاریخ انتشار 1973