On the parameters of r-dimensional toric codes

نویسنده

  • Diego Ruano
چکیده

From a rational convex polytope of dimension r ≥ 2 J.P. Hansen constructed an error correcting code of length n = (q−1)r over the finite field Fq. A rational convex polytope is the same datum as a normal toric variety and a Cartier divisor. The code is obtained evaluating rational functions of the toric variety defined by the polytope at the algebraic torus, and it is an evaluation code in the sense of Goppa. We compute the dimension of the code using cohomology. The minimum distance is estimated using intersection theory and mixed volumes, extending the methods of J.P. Hansen for plane polytopes. Finally we give a counterexample to Joyner’s conjectures [10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On m-dimensional toric codes

Toric codes are a class of m-dimensional cyclic codes introduced recently by J. Hansen in [7], [8], and studied in [9], [5], [10]. They may be defined as evaluation codes obtained from monomials corresponding to integer lattice points in an integral convex polytope P ⊆ Rm. As such, they are in a sense a natural extension of Reed-Solomon codes. Several articles cited above use intersection theor...

متن کامل

Bringing Toric Codes to the next dimension

This paper is concerned with the minimum distance computation for higher dimensional toric codes defined by lattice polytopes in R . We show that the minimum distance is multiplicative with respect to taking the product of polytopes, and behaves in a simple way when one builds a k -dilate of a pyramid over a polytope. This allows us to construct a large class of examples of higher dimensional t...

متن کامل

Quantum Stabilizer and Subsystem Codes from Algebro-geometric Toric Codes

We show how to construct quantum stabilizer and subsystem codes from algebro-geometric toric codes extending the known construction of subsystem codes from cyclic codes and extending the construction of stabilizer codes from toric codes in an earlier work by one of the authors. Since algebrogeometric toric codes are higher dimensional extensions of cyclic codes, we obtain this way a new and ric...

متن کامل

Toric Surfaces and Codes, Techniques and Examples

Abstract. We treat toric surfaces and their application to construction of error-correcting codes and determination of the parameters of the codes, surveying and expanding the results of [4]. For any integral convex polytope in R there is an explicit construction of a unique error-correcting code of length (q − 1) over the finite field Fq. The dimension of the code is equal to the number of int...

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007