Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage.
نویسندگان
چکیده
Enterococci account for nearly 10% of all nosocomial infections and constitute a significant treatment challenge due to their multidrug resistance properties. One of the well-studied virulence factors of Enterococcus faecalis is a secreted bacterial protease, termed gelatinase, which has been shown to contribute to the process of biofilm formation. Gelatinase belongs to the M4 family of bacterial zinc metalloendopeptidases, typified by thermolysin. Gelatinase is synthesized as a preproenzyme consisting of a signal sequence, a putative propeptide, and then the mature enzyme. We determined that the molecular mass of the mature protein isolated from culture supernatant was 33,030 Da, which differed from the predicted molecular mass, 34,570 Da, by over 1,500 Da. Using N-terminal sequencing, we confirmed that the mature protein begins at the previously identified sequence VGSEV, thus suggesting that the 1,500-Da molecular mass difference resulted from a C-terminal processing event. By using mutants with site-directed mutations within a predicted C-terminal processing site and mutants with C-terminal deletions fused to a hexahistidine tag, we determined that the processing site is likely to be between residues D304 and I305 and that it requires the Q306 residue. The results suggest that the E. faecalis gelatinase requires C-terminal processing for full activation of protease activity, making it a unique enzyme among the members of the M4 family of proteases of gram-positive bacteria.
منابع مشابه
Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates.
We examined 215 Enterococcus faecalis isolates and found that neither the two-component regulatory locus fsr (E. faecalis regulator) nor gelatinase production was more common in disease-associated isolates than in isolates colonizing healthy individuals (ca. 60 to 65%). The majority of gelatinase-negative isolates, including 14 endocarditis isolates (of 80 isolates tested), contained the previo...
متن کاملMolecular diversity of a putative virulence factor: purification and characterization of isoforms of an extracellular serine glutamyl endopeptidase of Enterococcus faecalis with different enzymatic activities.
A previously identified gene sprE of Enterococcus faecalis strain OG1 was shown to encode an extracellular serine protease that appears to belong to the glutamyl endopeptidase I staphylococcal group. A single form of SprE with a molecular mass of 25 kDa and a pH optimum between 7.0 and 7.5 was isolated from culture supernatant of wild-type E. faecalis strain OG1RF (TX4002); this form was appare...
متن کاملFunctional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis.
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified ...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملIn vitro processing of glutamyl endopeptidase proenzymes from Enterococcus faecalis and importance of N-terminal residue in enzyme catalysis
Glutamyl endopeptidase from Enterococcus faecalis, designated SprE, is one of the important virulence factors secreted as zymogen. In the present study we expressed recombinant SprE proenzyme (pro-SprE) in Escherichia coli and investigated the in vitro processing to mature SprE. It was found that trypsin could efficiently produce the active form of SprE with the N-terminus Ser 1 through cleavag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 189 24 شماره
صفحات -
تاریخ انتشار 2007