Accelerating Web Content Filtering by the Early Decision Algorithm

نویسندگان

  • Po-Ching Lin
  • Ming-Dao Liu
  • Ying-Dar Lin
  • Yuan-Cheng Lai
چکیده

Real-time content analysis is typically a bottleneck in Web filtering. To accelerate the filtering process, this work presents a simple, but effective early decision algorithm that analyzes only part of the Web content. This algorithm can make the filtering decision, either to block or to pass the Web content, as soon as it is confident with a high probability that the content really belongs to a banned or an allowed category. Experiments show the algorithm needs to examine only around one-fourth of the Web content on average, while the accuracy remains fairly good: 89% for the banned content and 93% for the allowed content. This algorithm can complement other Web filtering approaches, such as URL blocking, to filter the Web content with high accuracy and efficiency. Text classification algorithms in other applications can also follow the principle of early decision to accelerate their applications. key words: Web filtering, text classification, World Wide Web, early decision

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Early Decision Algorithm to Accelerate Web Content Filtering

Real-time content analysis can be a bottleneck in Web filtering. This work presents a simple, but effective early decision algorithm to accelerate the filtering process by examining only part of the Web content. The algorithm can make the filtering decision, either to block or to pass the Web content, as soon as it is confident with a high probability that the content should belong to a banned ...

متن کامل

Effective Learning to Rank Persian Web Content

Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Towards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore

Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...

متن کامل

A machine learning approach to web page filtering using content and structure analysis

As the Web continues to grow, it has become increasingly difficult to search for relevant information using traditional search engines. Topic-specific search engines provide an alternative way to support efficient information retrieval on the Web by providing more precise and customized searching in various domains. However, developers of topic-specific search engines need to address two issues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 91-D  شماره 

صفحات  -

تاریخ انتشار 2008