Structure of a Novel Winged-Helix Like Domain from Human NFRKB Protein
نویسندگان
چکیده
The human nuclear factor related to kappa-B-binding protein (NFRKB) is a 1299-residue protein that is a component of the metazoan INO80 complex involved in chromatin remodeling, transcription regulation, DNA replication and DNA repair. Although full length NFRKB is predicted to be around 65% disordered, comparative sequence analysis identified several potentially structured sections in the N-terminal region of the protein. These regions were targeted for crystallographic studies, and the structure of one of these regions spanning residues 370-495 was determined using the JCSG high-throughput structure determination pipeline. The structure reveals a novel, mostly helical domain reminiscent of the winged-helix fold typically involved in DNA binding. However, further analysis shows that this domain does not bind DNA, suggesting it may belong to a small group of winged-helix domains involved in protein-protein interactions.
منابع مشابه
Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملCrystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF.
The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-A resolution. The alpha/beta structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3gamma (HNF-3gamma), making it a winged-helix protein. The surface electrostatic properties of this com...
متن کاملThe structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR.
FadR is an acyl-CoA-responsive transcription factor, regulating fatty acid biosynthetic and degradation genes in Escherichia coli. The apo-protein binds DNA as a homodimer, an interaction that is disrupted by binding of acyl-COA: The recently described structure of apo-FadR shows a DNA binding domain coupled to an acyl-CoA binding domain with a novel fold, but does not explain how binding of th...
متن کاملUnified nomenclature for the winged helix/forkhead transcription factors.
The winged helix/forkhead class of transcription factors is characterized by a 100-amino-acid, monomeric DNAbinding domain. The structure of the DNA-binding domain of one of the class members, hepatocyte nuclear factor 3 g (HNF3g), in a complex with a DNA target has been solved (Clark et al. 1993). The DNA-binding domain folds into a variant of the helix–turn–helix motif and is made up of three...
متن کاملThe copper-responsive repressor CopR of Lactococcus lactis is a 'winged helix' protein.
CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-termi...
متن کامل