Seasonality, phytoplankton succession and the biogeochemical impacts of an autumn storm in the northeast Atlantic Ocean

نویسندگان

  • Stuart C. Painter
  • Madelaine Finlay
  • Victoria S. Hemsley
  • Adrian P. Martin
چکیده

Phytoplankton chemotaxonomic distributions are examined in conjunction with taxon specific particulate biomass concentrations and phytoplankton abundances to investigate the biogeochemical consequences of the passage of an autumn storm in the northeast Atlantic Ocean. Chemotaxonomy indicated that the phytoplankton community was dominated by nanoplankton (2–20 lm), which on average represented 75 ± 8% of the community. Microplankton (20–200 lm) and picoplankton (<2 lm) represented 21 ± 7% and 4 ± 3% respectively with the microplankton group composed of almost equal proportions of diatoms (53 ± 17%) and dinoflagellates (47 ± 17%). Total chlorophyll-a (TCHLa = CHLa + Divinyl CHLa) concentrations ranged from 22 to 677 ng L , with DvCHLa making minor contributions of between <1% and 13% to TCHLa. Higher DvCHLa contributions were seen during the storm, which deepened the surface mixed layer, increased mixed layer nutrient concentrations and vertically mixed the phytoplankton community leading to a post-storm increase in surface chlorophyll concentrations. Picoplankton were rapid initial respondents to the changing conditions with pigment markers showing an abrupt 4-fold increase in proportion but this increase was not sustained post-storm. 190-HEX, a chemotaxonomic marker for prymnesiophytes, was the dominant accessory pigment preand poststorm with concentrations of 48–435 ng L , and represented 44% of total carotenoid concentrations. Accompanying scanning electron microscopy results support the pigment-based analysis but also provide detailed insight into the nanoand microplankton communities, which proved to be highly variable between pre-storm and post-storm sampling periods. Nanoplankton remained the dominant size class preand post-storm but the microplankton proportion peaked during the period of maximum nutrient and chlorophyll concentrations. Classic descriptions of autumn blooms resulting from storm driven eutrophication events promoting phytoplankton growth in surface waters should be tempered with greater understanding of the role of storm driven vertical reorganization of the water column and of resident phytoplankton communities. Crucially, in this case we observed no change in integrated chlorophyll, particulate organic carbon or biogenic silica concentrations despite also observing a 50% increase in surface chlorophyll concentrations which indicated that the surface enhancement in chlorophyll concentrations was most likely fed from below rather than resulting from in situ growth. Though not measured directly there was no evidence of enhanced export fluxes associated with this storm. These observations have implications for the growing practice of using chlorophyll fluorescence from remote platforms to determine ocean productivity late in the annual productivity period and in response to storm mixing. 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http:// creativecommons.org/licenses/by/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biostratigraphy and paleo-ecological reconstruction on Scleractinian reef corals of Rupelian-Chattian succession (Qom Formation) in northeast of Delijan area

In this research, biostratigraphy and paleo-ecological reconstruction of the Qom Formation deposits in Bijegan village, northeast ofDelijan, are discussed. The studied section is situated in the western margin of the Urumieh-Dokhtar magmatic arc (the intra-arc basin).The Qom Formation deposits at the studied area are Rupelian-Chattian in age. Larger benthic foraminifers are used for biostratigr...

متن کامل

From silk to satellite: half a century of ocean colour anomalies in the Northeast Atlantic.

Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites - the Coastal Zone Colour Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998...

متن کامل

Effects of CO2 Enrichment on Marine Phytoplankton

Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion concentration and carbonate saturation state and increasing dissolved CO2 concentration. These changes affect marine plankton in various ways. On the organismal level, a moderate increase in CO2 facilitates photosynthetic carbon fixation ...

متن کامل

The uptake of silica during the spring bloom in the Northeast Atlantic Ocean

A full understanding of the biogeochemical cycling of silica in the North Atlantic is hampered by a lack of estimates of silica uptake by phytoplankton. We applied the 32Si radiotracer incubation technique to determine silica uptake rates at 10 sites during the UK-(Natural Environment Research Council) Faroes–Iceland–Scotland hydrographic and environmental survey (FISHES) cruise in the Northeas...

متن کامل

A meta-analysis of oceanic DMS and DMSP cycling processes: Disentangling the summer paradox

The biogenic volatile compound dimethylsulfide (DMS) is produced in the ocean mainly from the ubiquitous phytoplankton osmolyte dimethylsulfoniopropionate (DMSP). In the upper mixed layer, DMS concentration and the daily averaged solar irradiance are roughly proportional across latitudes and seasons. This translates into a seasonal mismatch between DMS and phytoplankton biomass at low latitudes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016