FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium.
نویسندگان
چکیده
The induction, growth, and differentiation of epithelial lung buds are regulated by the interaction of signals between the lung epithelium and its surrounding mesenchyme. Fibroblast growth factor-10 (FGF-10), which is expressed in the mesenchyme near the distal tips, and bone morphogenetic protein 4 (BMP4), which is expressed in the most distal regions of the epithelium, are important molecules in lung morphogenesis. In the present study, we used two in vitro systems to examine the induction, growth, and differentiation of lung epithelium. Transfilter cultures were used to determine the effect of diffusible factors from the distal lung mesenchyme (LgM) on epithelial branching, and FGF-10 bead cultures were used to ascertain the effect of a high local concentration of a single diffusible molecule on the epithelium. Embryonic tracheal epithelium (TrE) was induced to grow in both culture systems and to express the distal epithelial marker surfactant protein C at the tips nearest the diffusible protein source. TrE cultured on the opposite side of a filter to LgM branched in a pattern resembling intact lungs, whereas TrE cultured in apposition to an FGF-10 bead resembled a single elongating epithelial bud. Examination of the role of BMP4 on lung bud morphogenesis revealed that BMP4 signaling suppressed expression of the proximal epithelial genes Ccsp and Foxj1 in both types of culture and upregulated the expression of Sprouty 2 in TrE cultured with an FGF-10 bead. Antagonizing BMP signaling with Noggin, however, increased expression of both Ccsp and Foxj1.
منابع مشابه
Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development.
In the mature mouse lung, the proximal-distal (P-D) axis is delineated by two distinct epithelial subpopulations: the proximal bronchiolar epithelium and the distal respiratory epithelium. Little is known about the signaling molecules that pattern the lung along the P-D axis. One candidate is Bone Morphogenetic Protein 4 (Bmp4), which is expressed in a dynamic pattern in the epithelial cells in...
متن کاملThe embryonic mouse lung provides a model system for exploring the molecular and cellular principles underlying branching morphogenesis, a process common to the formation
The embryonic mouse lung provides a model system for exploring the molecular and cellular principles underlying branching morphogenesis, a process common to the formation of a number of organs (Gumbiner, 1992; Hogan, 1999; Metzger and Krasnow, 1999). The early (pseudoglandular) lung is composed of three cell layers: an inner endodermal epithelium, a splanchnic mesodermal mesenchyme and an outer...
متن کاملFGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast.
Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during B...
متن کاملPatterning of mouse embryonic stem cell-derived pan-mesoderm by Activin A/Nodal and Bmp4 signaling requires Fibroblast Growth Factor activity.
Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ lay...
متن کاملInvolvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis.
Branching morphogenesis of the embryonic lung requires interactions between the epithelium and the mesenchyme. Previously, we reported that Sonic hedgehog (Shh) transcripts are present in the epithelium of the developing mouse lung, with highest levels in the terminal buds. Here, we report that transcripts of mouse patched (Ptc), the homologue of a Drosophila gene encoding a putative transmembr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004