Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs

نویسندگان

  • R. Grant Rowe
  • Xiao-Yan Li
  • Yuexian Hu
  • Thomas L. Saunders
  • Ismo Virtanen
  • Antonio Garcia de Herreros
  • Karl-Friedrich Becker
  • Signe Ingvarsen
  • Lars H. Engelholm
  • Guido T. Bommer
  • Eric R. Fearon
  • Stephen J. Weiss
چکیده

Epithelial-mesenchymal transition (EMT) is required for mesodermal differentiation during development. The zinc-finger transcription factor, Snail1, can trigger EMT and is sufficient to transcriptionally reprogram epithelial cells toward a mesenchymal phenotype during neoplasia and fibrosis. Whether Snail1 also regulates the behavior of terminally differentiated mesenchymal cells remains unexplored. Using a Snai1 conditional knockout model, we now identify Snail1 as a regulator of normal mesenchymal cell function. Snail1 expression in normal fibroblasts can be induced by agonists known to promote proliferation and invasion in vivo. When challenged within a tissue-like, three-dimensional extracellular matrix, Snail1-deficient fibroblasts exhibit global alterations in gene expression, which include defects in membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invasive activity. Snail1-deficient fibroblasts explanted atop the live chick chorioallantoic membrane lack tissue-invasive potential and fail to induce angiogenesis. These findings establish key functions for the EMT regulator Snail1 after terminal differentiation of mesenchymal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition

Snail1 is a zinc finger transcriptional repressor whose pathological expression has been linked to cancer cell epithelial-mesenchymal transition (EMT) programs and the induction of tissue-invasive activity, but pro-oncogenic events capable of regulating Snail1 activity remain largely uncharacterized. Herein, we demonstrate that p53 loss-of-function or mutation promotes cancer cell EMT by de-rep...

متن کامل

Snail1 transcription factor controls telomere transcription and integrity

Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (M...

متن کامل

The role of microRNA-30a and downstream snail1 on the growth and metastasis of melanoma tumor

Objective(s): Growing evidences have indicated microRNAs as modulators of tumor development and aggression. On the other hand, a phenomenon known as epithelial-mesenchymal transition (EMT) that indicates a transient phase from epithelial-like features to mesenchymal phenotype is a key player in tumor progression.  In this study, we aimed to assess the potential impacts...

متن کامل

The p65 subunit of NF-κB and PARP1 assist Snail1 in activating fibronectin transcription.

Snail1 is a transcriptional repressor of E-cadherin that triggers epithelial-mesenchymal transition (EMT). Here, we report assisted Snail1 interaction with the promoter of a typical mesenchymal gene, fibronectin (FN1), both in epithelial cells undergoing EMT and in fibroblasts. Together with Snail1, the p65 subunit of NF-κB and PARP1 bound to the FN1 promoter. We detected nuclear interaction of...

متن کامل

miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial–mesenchymal transition and the Notch signaling pathway

Epithelial-mesenchymal transition (EMT) and Notch signaling are important for the growth and invasion of pancreatic cancer, which is a leading cause of cancer-related deaths worldwide. miR-34a has been shown to play pivotal roles in the progression of several types of cancer. However, little is known about the regulatory mechanisms of miR-34a in pancreatic cancer processes. The aim of this stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2009