CHAMP climate data based on the inversion of monthly average bending angles
نویسندگان
چکیده
Global Navigation Satellite System Radio Occultation (GNSS-RO) refractivity climatologies for the stratosphere can be obtained from the Abel inversion of monthly average bending-angle profiles. The averaging of large numbers of profiles suppresses random noise and this, in combination with simple exponential extrapolation above an altitude of 80 km, circumvents the need for a “statistical optimization” step in the processing. Using data from the US– Taiwanese COSMIC mission, which provides ∼ 1500–2000 occultations per day, it has been shown that this averageprofile inversion (API) technique provides a robust method for generating stratospheric refractivity climatologies. Prior to the launch of COSMIC in mid-2006, the data records rely on data from the CHAMP (CHAllenging Minisatellite Payload) mission. In order to exploit the full range of available RO data, the usage of CHAMP data is also required. CHAMP only provided ∼ 200 profiles per day, and the measurements were noisier than COSMIC. As a consequence, the main research question in this study was to see if the average bending-angle approach is also applicable to CHAMP data. Different methods for the suppression of random noise – statistical and through data quality prescreening – were tested. The API retrievals were compared with the more conventional approach of averaging individual refractivity profiles, produced with the implementation of statistical optimization used in the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Radio Occultation Meteorology Satellite Application Facility (ROM SAF) operational processing. In this study it is demonstrated that the API retrieval technique works well for CHAMP data, enabling the generation of long-term stratospheric RO climate data records from August 2001 and onward. The resulting CHAMP refractivity climatologies are found to be practically identical to the standard retrieval at the DMI (Danish Meteorological Institute) below altitudes of 35 km. Between 35 and 50 km, the differences between the two retrieval methods started to increase, showing largest differences at high latitudes and high altitudes. Furthermore, in the winter hemisphere high-latitude region, the biases relative to ECMWF (European Centre for Medium-range Weather Forecasts) were generally smaller for the new approach than for the standard retrieval.
منابع مشابه
Regional climate changes and their effects on monthly energy consumption in buildings in Iran
This present research work was carried out to evaluate the energy consumption in a typical Iranian building based on the forecast of climatic variables. Thus, the LARS-WG model was validated for some northwest stations of Iran, including Tabriz, Ardebil, Oromieh, Kermanshah, Hamedan, Sannandaj, Qazvin, and Zanjan. The average monthly outdoor temperature was forecasted from 2011 to 2100. The rel...
متن کاملUsing the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran
Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...
متن کاملInversion, error analysis, and validation of GPS/MET occultation data
The global positioning system meteorology (GPS/MET) experiment was the ®rst practical demonstration of global navigation satellite system (GNSS)-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum) of GNSS-transmitted radio waves caused by refra...
متن کاملSimulation of the climate change impact on monthly runoff of Dez watershed using IHACRES model
Identification and analysis of flow fluctuations in consequences of climate change is one of the most important factors in water resources management planning and this is vital especially in areas where large crowds are engaged in agriculture. Dez watershed, as an agricultural hub in the country, is one of areas that river flow fluctuations caused by climate change can affect a large population...
متن کاملClimate Change and the Challenges of Quantitative Assessment of Urban Climate Change: A Case Study in Tehran Metropolis
Background and Aim: Climate change on the earth is changing faster than ever before in the history. Cities are highly vulnerable to this climate change. Therefore, the present study aimed to investigate climate change in the metropolis of Tehran during the period 1991-2020 and help understand the limitations that cities may have in confronting climate change. Materials and Methods: This descri...
متن کامل