Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method

نویسندگان

  • Zhimi Hu
  • Xu Xiao
  • Huanyu Jin
  • Tianqi Li
  • Ming Chen
  • Zhun Liang
  • Zhengfeng Guo
  • Jia Li
  • Jun Wan
  • Liang Huang
  • Yanrong Zhang
  • Guang Feng
  • Jun Zhou
چکیده

Because of their exotic electronic properties and abundant active sites, two-dimensional (2D) materials have potential in various fields. Pursuing a general synthesis methodology of 2D materials and advancing it from the laboratory to industry is of great importance. This type of method should be low cost, rapid and highly efficient. Here, we report the high-yield synthesis of 2D metal oxides and hydroxides via a molten salts method. We obtained a high-yield of 2D ion-intercalated metal oxides and hydroxides, such as cation-intercalated manganese oxides (Na0.55Mn2O4·1.5H2O and K0.27MnO2·0.54H2O), cation-intercalated tungsten oxides (Li2WO4 and Na2W4O13), and anion-intercalated metal hydroxides (Zn5(OH)8(NO3)2·2H2O and Cu2(OH)3NO3), with a large lateral size and nanometre thickness in a short time. Using 2D Na2W4O13 as an electrode, a high performance electrochemical supercapacitor is achieved. We anticipate that our method will enable new path to the high-yield synthesis of 2D materials for applications in energy-related fields and beyond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrosynthesis and Characterization of Main Group and Transition Metal Oxides

Chapter 1: General Introduction A brief review of solid state synthetic techniques is given. The research discussed in this thesis is introduced. Chapter 2: Electrosynthesis of Highly Oxidized Transition Metal and Main Group Oxides in Molten Hydroxides The development of electrosynthesis in molten hydroxides of oxides containing high valent transition metals and main group metals is described. ...

متن کامل

New Opportunities for Metals Extraction and Waste Treatment by Electrochemical Processing in Molten Salts

Molten salt electrolysis is a proven technology for the extraction of metals -all the world's primary aluminum is produced in this manner. The unique properties of molten salts also make them excellent media in which to treat a variety of forms of waste. Of special note in this regard is electrolysis in molten oxides, a concept put forward by the author, initially as a "clean technology" for pr...

متن کامل

Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides.

Imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium, and quaternary ammonium bis(trifluoromethylsulfonyl)imide salts were functionalized with a carboxyl group. These ionic liquids are useful for the selective dissolution of metal oxides and hydroxides. Although these hydrophobic ionic liquids are immiscible with water at room temperature, several of them form a single phase with ...

متن کامل

Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.

Developing economic and sustainable synthetic strategies for metal-organic frameworks (MOFs) is imperative for promoting MOF materials into large scale industrial use. Very recently, an alternative strategy for MOF synthesis by using solvent-insoluble "solid matters" as cation reservoirs and/or templates has been developed to accomplish this goal, in which the solid matters often refer to metal...

متن کامل

Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017