Degrees of Freedom in Deep Neural Networks
نویسندگان
چکیده
In this paper, we explore degrees of freedom in deep sigmoidal neural networks. We show that the degrees of freedom in these models are related to the expected optimism, which is the expected difference between test error and training error. We provide an efficient Monte-Carlo method to estimate the degrees of freedom for multi-class classification methods. We show that the degrees of freedom is less than the parameter count in a simple XOR network. We extend these results to neural nets trained on synthetic and real data and investigate the impact of network’s architecture and different regularization choices. The degrees of freedom in deep networks is dramatically less than the number of parameters. In some real datasets, the number of parameters is several orders of magnitude larger than the degrees of freedom. Further, we observe that for fixed number of parameters, deeper networks have less degrees of freedom exhibiting a regularization-by-depth. Finally, we show that the degrees of freedom of deep neural networks can be used in a model selection criterion. This criterion has comparable performance to crossvalidation with lower computational cost.
منابع مشابه
Kinematic Synthesis of Parallel Manipulator via Neural Network Approach
In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...
متن کاملAvoiding pathologies in very deep networks
Choosing appropriate architectures and regularization strategies of deep networks is crucial to good predictive performance. To shed light on this problem, we analyze the analogous problem of constructing useful priors on compositions of functions. Specifically, we study the deep Gaussian process, a type of infinitely-wide, deep neural network. We show that in standard architectures, the repres...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.09260 شماره
صفحات -
تاریخ انتشار 2016