Graphene on h-BN: to align or not to align?
نویسندگان
چکیده
The contact strength, adhesion and friction, between graphene and an incommensurate crystalline substrate such as h-BN depends on their relative alignment angle θ. The well-established Novaco-McTague (NM) theory predicts for a monolayer graphene on a hard bulk h-BN crystal face a small spontaneous misalignment, here θNM ≃ 0.45 degrees which if realized would be relevant to a host of electronic properties besides the mechanical ones. Because experimental equilibrium is hard to achieve, we inquire theoretically about alignment or misalignment by simulations based on dependable state-of-the-art interatomic force fields. Surprisingly at first, we find compelling evidence for θ = 0, i.e., full energy-driven alignment in the equilibrium state of graphene on h-BN. Two factors drive this deviation from the NM theory. First, graphene is not flat, developing on h-BN a long-wavelength out-of-plane corrugation. Second, h-BN is not hard, releasing its contact stress by planar contractions/expansions that accompany the interface moiré structure. Repeated simulations by artificially forcing graphene to keep flat, and h-BN to keep rigid, indeed yield an equilibrium misalignment similar to θNM as expected. Subsequent sliding simulations show that friction of graphene on h-BN, small and essentially independent of misalignments in the artificial frozen state, strongly increases in the more realistic corrugated, strain-modulated, aligned state.
منابع مشابه
Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition
To grow precisely aligned graphene on h-BN without metal catalyst is extremely important, which allows for intriguing physical properties and devices of graphene/h-BN hetero-structure to be studied in a controllable manner. In this report, such hetero-structures were fabricated and investigated by atomic resolution scanning probe microscopy. Moiré patterns are observed and the sensitivity of mo...
متن کاملTransport studies in graphene-based materials and structures
Hu, Jiuning Ph.D., Purdue University, May 2015. Transport studies in graphenebased materials and structures. Major Professor: Yong P. Chen. Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some the...
متن کاملAssessment of Susceptibility to Five Common Antibiotics and Their Resistance Pattern in Clinical Enterococcus Isolates
Background & Objective: Enterococcus Species are the common cause of nosocomial infections, which are highly resistant to ...
متن کاملEvaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City
Background & Objective: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergen...
متن کاملDirect growth of large-area graphene and boron nitride heterostructures by a co-segregation method.
Graphene/hexagonal boron nitride (h-BN) vertical heterostructures have recently revealed unusual physical properties and new phenomena, such as commensurate-incommensurate transition and fractional quantum hall states featured with Hofstadter's butterfly. Graphene-based devices on h-BN substrate also exhibit high performance owing to the atomically flat surface of h-BN and its lack of charged i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 9 25 شماره
صفحات -
تاریخ انتشار 2017