Quincunx Fundamental Refinable Functions in Arbitrary Dimensions

نویسنده

  • Xiaosheng Zhuang
چکیده

In this paper, we generalize the family of Deslauriers–Dubuc’s interpolatory masks from dimension one to arbitrary dimensions with respect to the quincunx dilation matrices, thereby providing a family of quincunx fundamental refinable functions in arbitrary dimensions. We show that a family of unique quincunx interpolatory masks exists and such a family of masks is of real value and has the full-axis symmetry property. In dimension d = 2, we give the explicit form of such unique quincunx interpolatory masks, which implies the nonnegativity property of such a family of masks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quincunx fundamental refinable functions and quincunx biorthogonal wavelets

We analyze the approximation and smoothness properties of quincunx fundamental refinable functions. In particular, we provide a general way for the construction of quincunx interpolatory refinement masks associated with the quincunx lattice in R2. Their corresponding quincunx fundamental refinable functions attain the optimal approximation order and smoothness order. In addition, these examples...

متن کامل

Some Smooth Compactly Supported Tight Framelets Associated to the Quincunx Matrix

We construct two families of tight wavelet frames in L2(R) associated to the quincunx matrix. The first family has five generators and the second has only three. The generators have compact support, any given degree of regularity, and any fixed number of vanishing moments. Our construction is made in Fourier space and involves some refinable functions, the Oblique Extension Principle, and a sli...

متن کامل

Letter to the Editor the Regularity of Refinable Functions

The regularity of refinable functions has been studied extensively in the past. A classical result by Daubechies and Lagarias [6] states that a compactly supported refinable function in R of finite mask with integer dilation and translations cannot be in C∞. A bound on the regularity based on the eigenvalues of certain matrices associated with the refinement equation is also given. Surprisingly...

متن کامل

Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function

Smoothness and symmetry are two important properties of a refinable function. It is known that the Sobolev smoothness exponent of a refinable function can be estimated by computing the spectral radius of a certain finite matrix which is generated from a mask. However, the increase of dimension and the support of a mask tremendously increases the size of the matrix and therefore makes the comput...

متن کامل

Band-limited Wavelets and Framelets in Low Dimensions

In this paper, we study the problem of constructing non-separable band-limited wavelet tight frames, Riesz wavelets and orthonormal wavelets in R and R. We first construct a class of non-separable band-limited refinable functions in low-dimensional Euclidean spaces by using univariate Meyer’s refinable functions along multiple directions defined by classic box-spline direction matrices. These n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017