Improved Crude Oil Price Forecasting With Statistical Learning Methods
نویسنده
چکیده
Reliable forecasts of the price of oil are of interest for a wide range of applications. For example, central banks and private sector forecasters view the price of oil as one of the key variables in generating macroeconomic projections and in assessing macroeconomic risks. Of particular interest is the question of the extent to which the price of oil is helpful in predicting recessions. This paper presents a statistical learning method (SLM) based on combined fuzzy system (FS), artificial neural network (ANN), and support vector regression (SVR) to cope with optimum long-term oil price forecasting in noisy, uncertain, and complex environments. A number of quantitative factors were discovered from this model and used as the input. For verification and testing, the West Texas Intermediate (WTI) crude oil spot price is used to test the effectiveness of the proposed learning methodology. Empirical results reveal that the proposed SLM-based forecasting can model the nonlinear relationship between the input variables and price very well. Furthermore, in-sample and out-of-sample prediction performance also demonstrates that the proposed SLM model can produce more accurate prediction results than other nonlinear models.
منابع مشابه
Comparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملModeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP
       This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...
متن کاملارائه یک مدل شبکه عصبی جهت پی شبینی کوتاه مدت قیمت نفت خام
Iran is one of the top five important countries in the world that have rich oil reserves. Exchange incomes produced by oil exports play an important role in country’s budget. Therefore, the studies and researches in fields that are related to oil economics have great privilage. Today, there is a plentiful interest in use of artificial intelligence methods especially neural networks for improvi...
متن کاملA New Method for Crude Oil Price Forecasting Based on Support Vector Machines
This paper proposes a new method for crude oil price forecasting based on support vector machine (SVM). The procedure of developing a support vector machine model for time series forecasting involves data sampling, sample preprocessing, training & learning and out-of-sample forecasting. To evaluate the forecasting ability of SVM, we compare its performance with those of ARIMA and BPNN. The expe...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کامل