A Note on the Bezier Variant of Certain Bernstein Durrmeyer Operators
نویسندگان
چکیده
In the present note, we introduce a Bezier variant of a new type of Bernstein Durrmeyer operator, which was introduced by Gupta [3]. We estimate the rate of convergence by using the decomposition technique of functions of bounded variation and applying the optimum bound. It is observed that the analysis for our Bezier variant of new Bernstein Durrmeyer operators is different from the usual Bernstein Durrmeyer operators studied by Zeng and Chen [9].
منابع مشابه
Blending Type Approximation by Bernstein-durrmeyer Type Operators
In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absol...
متن کاملRate of Convergence of Durrmeyer Type Baskakov-Bezier Operators for Locally Bounded Functions
In the present paper, we introduce the Durrmeyer variant of Baskakov-Bezier operators Bn,α(f, x), which is the modified form of Baskakov-Beta operators. Here we obtain an estimate on the rate of convergence of Bn,α(f, x) for functions of bounded variation in terms of Chanturiya’s modulus of variation. In the end we also propose an open problem for the readers.
متن کاملPointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
In the present paper, we introduce a kind of Durrmeyer variant of Bernstein-Stancu operators, and we obtain the direct and converse results of approximation by the operators.
متن کاملOn convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کامل( p,q)-Genuine Baskakov-Durrmeyer operators
In the present article, we propose the $(p,q)$ variant of genuine Baskakov Durrmeyer operators. We obtain moments and establish some direct results, which include weighted approximation and results in terms of modulus of continuity of second order.
متن کامل