A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte.
نویسندگان
چکیده
The primary axes of Drosophila are set up by the localization of transcripts within the oocyte. These mRNAs originate in the nurse cells, but how they move into the oocyte remains poorly understood. Here, we study the path and mechanism of movement of gurken RNA within the nurse cells and towards and through ring canals connecting them to the oocyte. gurken transcripts, but not control transcripts, recruit the cytoplasmic Dynein-associated co-factors Bicaudal D (BicD) and Egalitarian in the nurse cells. gurken RNA requires BicD and Dynein for its transport towards the ring canals, where it accumulates before moving into the oocyte. Our results suggest that bicoid and oskar transcripts are also delivered to the oocyte by the same mechanism, which is distinct from cytoplasmic flow. We propose that Dynein-mediated transport of specific RNAs along specialized networks of microtubules increases the efficiency of their delivery, over the flow of general cytoplasmic components, into the oocyte.
منابع مشابه
The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila.
During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle or...
متن کاملspn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila.
The anteroposterior and dorsoventral axes of the Drosophila embryo are established during oogenesis through the activities of Gurken (Grk), a Tgfalpha-like protein, and the Epidermal growth factor receptor (Egfr). spn-F mutant females produce ventralized eggs similar to the phenotype produced by mutations in the grk-Egfr pathway. We found that the ventralization of the eggshell in spn-F mutants...
متن کاملDrosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte
The unidirectional movements of the microtubule-associated motors, dyneins, and kinesins, provide an important mechanism for the positioning of cellular organelles and molecules. An intriguing possibility is that this mechanism may underlie the directed transport and asymmetric positioning of morphogens that influence the development of multicellular embryos. In this report, we characterize the...
متن کاملPolar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation
BACKGROUND The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to dist...
متن کاملDrosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification
In the Drosophila oocyte, mRNA transport and localised translation play a fundamental role in axis determination and germline formation of the future embryo. gurken mRNA encodes a secreted TGF-α signal that specifies dorsal structures, and is localised to the dorso-anterior corner of the oocyte via a cis-acting 64 nucleotide gurken localisation signal. Using GRNA chromatography, we characterise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 134 10 شماره
صفحات -
تاریخ انتشار 2007