Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation.
نویسندگان
چکیده
Current responses to N-methyl-D-aspartate (NMDA) in layer V pyramidal neurons of the rat prefrontal cortex were potentiated by the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). The failure of these nucleotides to induce inward current on fast local superfusion suggested the activation of P2Y rather than P2X receptors. The potentiation by ATP persisted in a Ca(2+)-free superfusion medium but was abolished by 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester, cyclopiazonic acid, 7-nitroindazole, fluoroacetic acid, bafilomycin, and tetanus toxin, indicating that an astrocytic signaling molecule may participate. Because the metabotropic glutamate receptor (mGluR) agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) (group I/II) and (RS)-3,5-dihydroxyphenylglycine (group I) both imitated the effect of ATP and the group I mGluR antagonist 1-aminoindan-1,5-dicarboxylic acid or a combination of selective mGluR(1) (7-(hydroxyimino)-cyclopropa[b]chromen-1a-carboxylate) and mGluR(5) (2-methyl-6-(phenylethynyl)pyridine) antagonists abolished the facilitation by ATP, it was concluded that the signaling molecule may be glutamate. Pharmacological tools known to interfere with the transduction cascade of type I mGluRs (guanosine 5'-O-(3-thiodiphosphate), U-73122, xestospongin C, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin kinase II [CAMKII] inhibitor peptide) depressed the actions of both ATP and ACPD. Characterization of the P2Y receptor by agonists (ATP and UTP), antagonists (suramin and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid), and knockout mice (P2Y(2)(-/-)) suggested that the nucleotides act at the P2Y(4) subtype. In conclusion, we propose that exogenous and probably also endogenous ATP release vesicular glutamate from astrocytes by P2Y(4) receptor activation. This glutamate then stimulates type I mGluRs of layer V pyramidal neurons and via the G(q)/phospholipase C/inositol 1,4,5-trisphosphate/Ca(2+)/CAMKII transduction pathway facilitates NMDA receptor currents.
منابع مشابه
Subtype‐specific effects of dopaminergic D2 receptor activation on synaptic trains in layer V pyramidal neurons in the mouse prefrontal cortex
In humans, prefrontal cortical areas are known to support executive functions. In mice, these functions are mediated by homologous regions in the medial prefrontal cortex (mPFC). Executive processes are critically dependent on optimal levels of dopamine (DA), but the cellular mechanisms of DA modulation are incompletely understood. Stable patterns of neuronal activity may be sensitive to freque...
متن کاملDopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.
Dopamine acts mainly through the D1/D5 receptor in the prefrontal cortex (PFC) to modulate neural activity and behaviors associated with working memory. To understand the mechanism of this effect, we examined the modulation of excitatory synaptic inputs onto layer V PFC pyramidal neurons by D1/D5 receptor stimulation. D1/D5 agonists increased the size of N-methyl-d-aspartate (NMDA) component of...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملContribution of Dopamine D1/5 Receptor Modulation of Post-Spike/Burst Afterhyperpolarization to Enhance Neuronal Excitability of Layer V Pyramidal Neurons in Prepubertal Rat Prefrontal Cortex
Dopamine (DA) receptors in the prefrontal cortex (PFC) modulate both synaptic and intrinsic plasticity that may contribute to cognitive processing. However, the ionic basis underlying DA actions to enhance neuronal plasticity in PFC remains ill-defined. Using whole-cell patch-clamp recordings in layer V-VI pyramidal cells in prepubertal rat PFC, we showed that DA, via activation of D1/5, but no...
متن کاملLead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells
Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2007