Point Set Denoising Using Bootstrap-Based Radial Basis Function
نویسندگان
چکیده
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
منابع مشابه
Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملA new trust-region algorithm based on radial basis function interpolation
Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...
متن کاملUnstructured Point Cloud Surface Denoising and Decimation Using Distance RBF K-Nearest Neighbor Kernel
In this work unstructured point clouds, resulting from 3D range acquisition are point wise-processed, using a proposed kd-tree nearest neighbor method, based in a generative data driven, local radial basis function’s (RBF) support:φ(S, pi(xi, yi, zi)), for the point set S : {pi}i I , using surface statistic and a Gaussian convolution kernel, point sets are smoothed according to local surface fe...
متن کاملRBF Network Combined With Wavelet Denoising for Sardine Catches Forecasting
This paper deals with time series of monthly sardines catches in the north area of Chile. The proposed method combines radial basis function neural network (RBFNN) with wavelet denoising algorithm. Wavelet denoising is based on stationary wavelet transform with hard thresholding rule and the RBFNN architecture is composed of linear and nonlinear weights, which are estimated by using the separab...
متن کامل