Assessment of Membrane Fluidity in Individual Yeast Cells by Laurdan Generalised Polarisation and Multi-Photon Scanning Fluorescence Microscopy

نویسندگان

  • ROBERT P. LEARMONTH
  • ENRICO GRATTON
چکیده

Here we describe techniques that we developed for monitoring membrane fluidity of individual yeast cells during environmental adaptation and physiological changes. Multiphoton scanning fluorescence microscopy using laurdan as a membrane probe enables determination whether fluidity changes seen by spectroscopy reflect universal responses or changes only of sub-populations. Yeast membranes are a primary site of environmental response and adaptation. Using fluorescence spectroscopy with DPH polarization and laurdan Generalized Polarization (GP), we previously found rapid “average” membrane fluidity modulation in yeast populations during growth and in response to nutrients or environmental stresses. To determine whether such responses reflect all cells we conducted the first multi-photon scanning fluorescence microscopy study of yeasts, measuring laurdan GP. We assessed membrane fluidity responses of individual yeasts related to growth phase, heat stress and ethanol stress. Average fluidity decreased as cultures aged, however the decreased fluidity was due in some cases to an increasing proportion of uniformly low fluidity (high GP) cells, which were shown by vital dye to be dead. When yeasts were heat stressed, the mean laurdan GP increased in all cells, thus the entire population evidenced damage (viz. decreased membrane fluidity) to the same degree. On the other hand, with ethanol stress fluidity increased (GP decreased) on exposure of cells. All cells were affected although not to the same degree, and with variable recovery. The recovery assessed from GP microscopy was highly variable, and greater by that seen by spectroscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-assisted fluorescence microscopy for measuring cell membrane dynamics.

Membranes of living cells are characterized by laser-assisted fluorescence microscopy, in particular a combination of microspectrofluorometry, total internal reflection fluorescence microscopy (TIRFM), fluorescence lifetime imaging (FLIM) and Forster resonance energy transfer (FRET) spectroscopy. The generalized polarization (GP, characterizing a spectral shift which depends on the phase of mem...

متن کامل

IFITM Proteins Restrict Viral Membrane Hemifusion

The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syn...

متن کامل

Fluorescence imaging of membrane dynamics in living cells.

Methods of wide-field fluorescence microscopy for measuring membrane dynamics of living cells are described, including spectral imaging as well as anisotropy imaging of the membrane marker 6-dodecanoyl-2-dimethylamino naphthalene (laurdan). Plasma membranes are selected by illumination with an evanescent electromagnetic field and distinguished from intracellular membranes assessed by whole-cell...

متن کامل

Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope.

Lateral organization of biological membranes is frequently studied using fluorescence microscopy. One of the most widely used probes for these studies is 2-dimethylamino-6-lauroylnaphthalene (laurdan). The fluorescence of this probe is sensitive to the environment polarity, and thus laurdan reports the local penetration of water when inserted in membranes. Unfortunately, this probe can only be ...

متن کامل

Heat Stress Causes Spatially-Distinct Membrane Re-Modelling in K562 Leukemia Cells

Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004