FOXO1A is a target for HER2-overexpressing breast tumors.
نویسندگان
چکیده
Trastuzumab treatment has improved the overall survival of HER2-overexpressing breast cancer patients. However, many of these patients will eventually become resistant to treatment. The mechanisms that contribute to resistance to trastuzumab are unknown. In this study, we tested the hypothesis that targeting of the FKHR transcription factor FOXO1A in HER2-overexpressing breast tumor cells can overcome the trastuzumab resistance in vitro. We have shown that overexpression of HER2 leads to activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and subsequent inactivation of FOXO1A in HER2-overexpressing breast cancer cells SKBR3, BT474, and MCF7-HER2. In wild-type SKBR3 and BT474 cells, trastuzumab downregulates active Akt and increases FOXO1A expression that leads to increase in p27(kip1) and decrease in cyclin D1 and finally inhibits cell proliferation. In contrast, the effect of trastuzumab was eliminated by the reduction of FOXO1A in HER2-overexpressing cells with constitutively active Akt1 (SKBR3/AA28 and BT474/AA9). The downregulation of FOXO1A resulted in nuclear export of p27(kip1). Blocking the constitutively active Akt by a specific Akt/protein kinase B signaling inhibitor-2 (API-2) significantly increased FOXO1A expression and rendered the cells more responsive to trastuzumab-induced growth inhibition. Reactivation of FOXO1A by stable or transient transfection also restored the growth-inhibitory effects of trastuzumab in SKBR3/AA28, BT474/AA9, and MCF7-HER2 cells. Knocking down FOXO1A by small interfering RNA resulted in reducing trastuzumab-induced growth inhibition. In summary, trastuzumab can inhibit proliferation of HER2-overexpressing breast cancer cells by reactivating FOXO1A through inhibition of the PI3K/Akt pathway. FOXO1A may therefore serve as a target for HER2-overexpressing breast tumors.
منابع مشابه
Generation of CHO Stable Cell Line Overexpressing HER2: an In Vitro Model for Breast Cancer
Background: Breast cancer is the most common female malignancy and the leading cause of cancer mortality in women worldwide. The human epidermal growth factor receptor2 (HER2) is a transmembrane tyrosine kinase receptor that is usually overexpressed in human breast cancers. Stable cell lines heterogeneously overexpressing HER2 are highly required as in vitro models for breast cancer research. T...
متن کاملDevelopment of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX
Objective(s): Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2) is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressi...
متن کاملIncomplete surgical resection of DCIS results in activation of HER-2 in residual breast cancer cells.
e22035 Background: HER-2 amplification and consecutive overexpression is a predictor for poor prognosis in breast cancer patients. In addition, incomplete resection of HER2 overexpressing tumors leads to increased proliferation of residual breast cancer cells. While the local release of cytokines is thought to be responsible for the malignant behaviour of remaining tumor tissue, the exact mecha...
متن کاملSTAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits
Clinically, HER2 proto-oncogene amplification is found in about 25-30% of human breast cancers, where it is correlated to a poor prognosis. Constitutive STAT3 activation is found in about 50-60% of the breast tumors and associated with tumorigenesis and drug resistance. In this study, we showed that STAT3 was phosphorylated in HER2-overexpressing, ER-positive human breast tumors and, furthermor...
متن کاملDual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 70 13 شماره
صفحات -
تاریخ انتشار 2010