On the Analytic-numeric Treatment of Weakly Singular Integrals on Arbitrary Polygonal Domains
نویسندگان
چکیده
An alternative analytical approach to calculate the weakly singular free-space static potential integral associated to uniform sources is presented. Arbitrary oriented flat polygons are considered as integration domains. The technique stands out by its mathematical simplicity and it is based on a novel integral transformation. The presented formula is equivalent to others existing in literature, being also concise and suitable within a singularity subtraction framework. Generalized Cartesian product rules built on the double exponential formula are utilized to integrate numerically the resulting analytical 2D potential integral. As a consequence, drawbacks associated to endpoint singularities in the derivative of the potential are tempered. Numerical examples within a surface integral equation-Method of Moments framework are finally provided.
منابع مشابه
A general Gauss theorem for evaluating singular integrals over polyhedral domains
A general Gauss divergence theorem with applications to convolution integrals of the form ∫ f(x̄)h(|x̄− ā|)dVn, where the integration extends over an n-dimensional polyhedral domain, is presented. The kernel h(|x̄ − ā|) may be singular, but the given integral must remain integrable. As a result of the Gauss theorem, the given integral is reduced to an integral over the boundary of the n-dimensiona...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملMultiresolution separated representations of singular and weakly singular operators ✩
For a finite but arbitrary precision, we construct efficient low separation rank representations for the Poisson kernel and for the projector on the divergence free functions in the dimension d = 3. Our construction requires computing only one-dimensional integrals. We use scaling functions of multiwavelet bases, thus making these representations available for a variety of multiresolution algor...
متن کاملDirect Evaluation of Hypersingular Galerkin Surface Integrals. II
Direct boundary limit algorithms for evaluating hypersingular Galerkin surface integrals have been successful in identifying and removing the divergent terms, leaving finite integrals to be evaluated. This paper is concerned with the numerical computation of these multi-dimensional integrals. The integrands contain a weakly singular logarithmic term that is difficult to evaluate directly using ...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کامل