Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.
نویسندگان
چکیده
To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.
منابع مشابه
Single fiber analyses of glycogen related proteins reveal their differential association with glycogen in rat 4 skeletal muscle 5 6 7
28
متن کاملParallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway
MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signali...
متن کاملتأثیر سه ماه تمرین هوازی بر مسیر پیام رسانی Wnt عضله اسکلتی موشهای صحرایی نر
Background: Atrophy in skeletal muscle plays an important role in disease-related tissue dysfunction such as sarcopenia. The Wnt-signaling pathway has been shown to be critical for skeletal muscle development. Current evidence suggests that exercise trainings may alter hypertrophy-related signaling in skeletal muscle. Therefore, the purpose of this study was investigating the effect of three mo...
متن کاملNo limiting role for glycogenin in determining maximal attainable glycogen levels in rat skeletal muscle.
We examined whether the protein level and/or activity of glycogenin, the protein core upon which glycogen is synthesized, is limiting for maximal attainable glycogen levels in rat skeletal muscle. Glycogenin activity was 27.5 +/- 1.4, 34.7 +/- 1.7, and 39.7 +/- 1.3 mU/mg protein in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. A similar fiber type dependency of glyco...
متن کاملDifferential Metabolic Effects of Novel Cilostamide Analogs, Methyl Carbostiryl Derivatives, on Mouse and Hyperglycemic Rat
Objective(s) PDE3 has a functional role in insulin secretion and action. We investigated the metabolic effects of new synthetic PDE3 inhibitors (mc1, mc2, mc5 and mc6), on mice and hyperglycemic rat. Materials and Methods The test compound or solvent was injected subcutaneously to mice, for 7 days. On day 8, blood and liver samples were obtained. In hyperglycemic rat, 0.5 g/kg glucose with o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 303 11 شماره
صفحات -
تاریخ انتشار 2012