Molecular and Cellular Pathobiology F-Fluorodeoxy-glucose Positron Emission Tomography Marks MYC-Overexpressing Human Basal-Like Breast Cancers
نویسندگان
چکیده
In contrast to normal cells, cancer cells avidly take up glucose andmetabolize it to lactate even when oxygen is abundant, a phenomenon referred to as the Warburg effect. This fundamental alteration in glucose metabolism in cancer cells enables their specific detection by positron emission tomography (PET) following i.v. injection of the glucose analogue F-fluorodeoxy-glucose (FDG). However, this useful imaging technique is limited by the fact that not all cancers avidly take up FDG. To identify molecular determinants of FDG retention, we interrogated the transcriptomes of human-cancer cell lines and primary tumors for metabolic pathways associated with FDG radiotracer uptake. From ninety-five metabolic pathways that were interrogated, the glycolysis, and several glycolysis-related pathways (pentose phosphate, carbon fixation, aminoacyl-tRNA biosynthesis, one-carbon-pool by folate) showed the greatest transcriptional enrichment. This "FDG signature" predicted FDG uptake in breast cancer cell lines and overlapped with established gene expression signatures for the "basal-like" breast cancer subtype and MYC-induced tumorigenesis in mice. Human breast cancers with nuclear MYC staining and high RNA expression of MYC target genes showed high FDG-PET uptake (P < 0.005). Presence of the FDG signature was similarly associated with MYC gene copy gain, increased MYC transcript levels, and elevated expression of metabolic MYC target genes in a human breast cancer genomic dataset. Together, our findings link clinical observations of glucose uptake with a pathologic and molecular subtype of human breast cancer. Furthermore, they suggest related approaches to derive molecular determinants of radiotracer retention for other PET-imaging probes. Cancer Res; 71(15); 1–11. 2011 AACR.
منابع مشابه
Regulation of the Warburg effect in early-passage breast cancer cells.
Malignancy in cancer is associated with aerobic glycolysis (Warburg effect) evidenced by increased trapping of [(18)F]deoxyglucose (FdG) in patients imaged by positron emission tomography (PET). [(18)F]deoxyglucose uptake correlates with glucose transporter (GLUT-1) expression, which can be regulated by hypoxia-inducible factor 1 alpha (HIF-1alpha). We have previously reported in established br...
متن کاملIntegrated Systems and Technologies Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early-Treatment Response in Breast Cancer
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, highresolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin ...
متن کاملFeasibility of direct mapping of cerebral fluorodeoxy-D-glucose metabolism in situ at subcellular resolution using soft X-ray fluorescence.
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick b...
متن کاملMolecular imaging approaches in the diagnosis of breast cancer: A systematic review and meta-analysis
Introduction:The accuracy of positron emission tomography with computed tomography (PET/CT), positron emission mammography (PEM), and breast specific-gamma imaging (BSGI) in diagnosing breast cancer has never been systematically assessed, the present systematic review was aimed to address this issue. Methods:PubMed, Scopus and EMBASE were searched for st...
متن کامل18F-FDG PET/CT for Monitoring the Response of Breast Cancer to miR-143-Based Therapeutics by Targeting Tumor Glycolysis
Increased glucose utilization is a hallmark of cancer, and tumor metabolism is emerging as anticancer target for therapeutic intervention. Triple-negative breast cancers TNBC are highly glycolytic and show poor clinical outcomes. We previously identified hexokinase 2, the major glycolytic enzyme, as a target gene of miR-143 in TNBC. Here, we developed a therapeutic formulation using cholesterol...
متن کامل