Tuning the optical and photoelectrochemical properties of surface-modified TiO2.
نویسندگان
چکیده
Surface-modification of TiO(2) is found to be a powerful tool for manipulating the fundamental optical and photoelectrochemical properties of TiO(2). High surface area nanocrystalline TiO(2) was modified by urea pyrolysis products at different temperatures between 300 degrees C and 500 degrees C. Modification occurs through incorporation of nitrogen species containing carbon into the surface structure of titania. The N1s XPS binding energies are 399-400 eV and decrease with increasing modification temperature whereby the Ti2p(3/2) peak is also shifted to lower binding energies by about 0.5 eV. With increasing modification temperature the optical bandgap of surface-modified TiO(2) continuously decreases down to approximately 2.1 eV and the quasi-Fermi level of electrons at pH 7 is gradually shifted from -0.6 V to -0.3 V vs. NHE. The surface-modified materials show enhanced sub-bandgap absorption (Urbach tail) and exhibit photocurrents in the visible down to 750 nm. The maximum incident photon-to-current efficiency (IPCE) was observed for the materials modified at 350 degrees C and 400 degrees C (IPCE approximately 14% at 400 nm, and IPCE approximately 1% at 550 nm, respectively). The efficiency of photocurrent generation is limited by surface recombination, which leads to a significant decrease in IPCE values and significantly changes the shape of the IPCE spectra in dependence on the optical bandgap.
منابع مشابه
Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.
Bi2WO6 nanosheet modified TiO2 nanotube arrays were synthesized by an anodization method combined with sequential chemical bath deposition for enhancement of the photoelectrochemical detection performance. The structures, morphologies and elemental compositions of the nanotube arrays were characterized with X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectrometry. Bi...
متن کاملPerformance of Chemically Modified TiO2-poly (vinylidene fluoride) DCMD for Nutrient Isolation and Its Antifouling Properties
The surface properties of TiO2-PVDF nanocomposite membranes were investigated by incorporating different chemically modified TiO2 nanoparticles into the poly (vinylidene fluoride) (PVDF) matrix. The nanocomposite membranes were prepared via dual coagulation bath diffusion and the induced phase inversion method. The membrane surface morphologies were investigated by using SEM and AFM and related...
متن کاملDevelopment of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment.
Electrochemical advanced oxidation processes (EAOPs) are used to chemically burn non biodegradable complex organic compounds that are present in polluted effluents. A common approach involves the use of TiO2 semiconductor substrates as either photocatalytic or photoelectrocatalytic materials in reactors that produce a powerful oxidant (hydroxyl radical) that reacts with pollutant species. In th...
متن کاملSynthesis of TiO2-CuO mesoporous composite nanoparticles by sol-gel method and evaluation of structural, optical and photocatalytic properties
Given the growing importance of photocatalysts in the industrial wastewater treatment, in this study, TiO2-CuO (TC) composite nanoparticles were synthesized by sol-gel method. Tetrabutyl orthotitanate (TBT), copper nitrate-3hydrate and ethanol were used as titanium dioxide precursor, copper oxide precursor and solvent, respectively. The structural, optical, photocatalytic activity and BET-BJH...
متن کاملAdsorption and Photocatalytic Properties of Surface-Modified TiO2 nanoparticles for Methyl Orange Removal from Aqueous Solutions
Titanium dioxide nanoparticles surface-modified by 5-sulfosalicylic acid 5-SA-TiO2 were prepared in ethanol by the chemisorption process. The effects of surface improvement on the photocatalytic degradation and adsorption of methyl orange MO were studied in a batch system by considering the various parameters, such as contact time, adsorbent dosage, pH, initial dye concentration and temperature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2008