GNSS Measurement of Rain Rate by Polarimetric Phase Shift: Theoretical Analysis
نویسندگان
چکیده
In this paper, a novel method for rain rate estimation is researched by polarimetric phase shift of the Global Navigation Satellite System (GNSS). The physical process of GNSS signals propagating through rain-filled medium is investigated, by which the cause of polarimetric phase shift is explored. Then, a theoretical model between polarimetric phase shift ∆φ and rain rate R is established and simulated, which is based on the oblate spheroid raindrop model, four different popular raindrop size distribution models and raindrop canting angle distribution across the Space-Earth rain path. Additionally, effects of raindrop size distribution, rain path length, raindrop canting angle and temperature on the ∆φ-R relation are discussed systematically. Other factors in the slant path such as ice crystals, melting particles and ionosphere are also researched preliminarily. The results show that polarimetric phase shift of GNSS signals, which has a strong correlation with rain rate, can be used to estimate the rain rate, and these influencing factors, raindrop size distribution, rain path length, raindrop canting angle and temperature, are quite important in the process of rain rate measurement. It can be also found that the effect of ice crystals can be negligible, while that of melting particles should be considered, and though ionosphere effects are not obvious, the ionospheric anomalies cannot be neglected in future experiments. This method has potential applications in real-time, continuous, extreme precipitation reconnaissance and numerical weather prediction.
منابع مشابه
Feasibility Study of Rain Rate Monitoring from Polarimetric GNSS Propagation Parameters
In this work, the feasibility of estimating rain rate based on polarimetric Global Navigation Satellite Systems (GNSS) signals is explored in theory. After analyzing the cause of polarimetric signals, three physical-mathematical relation models between co-polar phase shift (KHH, KVV), specific differential phase shift (KDP), and rain rate (R) are respectively investigated. These relation models...
متن کاملSimulation of polarimetric radar variables in rain at S-, C- and X-band wavelengths
Polarimetric radar variables of rainfall events, like differential reflectivity ZDR, or specific differential phase KDP, are better suited for estimating rain rate R than just the reflectivity factor for horizontally polarized waves, ZH. A variety of physical and empirical approaches exist to estimate the rain rate from polarimetric radar observables. The relationships vary over a wide range wi...
متن کاملP2b.1 Constrained Gamma Drop Size Model for Polarimetric Radar Rain Estimation: Justification and Development
Accurate rain estimation from radar measurements has been a difficult task due to the variation of raindrop size distribution (DSD), lack of accurate axis ratio model, measurement error, clutter, and so forth. Previously, rain estimation from weather radars has been largely dependent upon empirical relations such as R-Z relations. The development of polarimetric radar makes accurate rain DSD re...
متن کاملRainfall retrieval from polarimetric X-band radar measurements
Dual polarization radars have shown considerable improvement of quantitative estimation of rainfall rate and raindrop size distribution (DSD) parameters. Most studies have been done with S and C-band radars and only a few studies with higher X-band weather radars. X-band radars have the advantages of lower cost and higher differential phase shift but with higher attenuation too. Furthermore, th...
متن کاملOptimal rain rate estimation algorithm for light and heavy rain using polarimetric measurements
In this paper, we propose an ameliorated physically-based rain rate estimation algorithm for semi-arid regions using the Rayleigh approximation. The proposed algorithm simultaneously uses the reflectivity and the specific differential phase to provide an accurate estimation for both small and large rain rates. In order to validate the proposed estimator, simulated polarimetric rain rate data ba...
متن کامل