Stable Pairs and Bps Invariants

نویسندگان

  • R. PANDHARIPANDE
  • R. P. THOMAS
چکیده

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 1. χ-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 2. BPS rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 2.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 2.2. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 2.3. Wall-crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 3. Local definition of BPS invariants . . . . . . . . . . . . . . . . . . . . . 276 3.1. Fixed curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 3.2. Chow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 3.3. Nonsingular curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 3.4. Singular curves: Discussion . . . . . . . . . . . . . . . . . . . . . . . 279 3.5. Singular curves: Results . . . . . . . . . . . . . . . . . . . . . . . . . 280 3.6. Nodal curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Appendix A. Reduced curve classes . . . . . . . . . . . . . . . . . . . . . 287 Appendix B. Stable pairs on Gorenstein curves . . . . . . . . . . . . . . . 289 B.1. Gorenstein curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 B.2. Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Appendix C. K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 C.1. Nonsingularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 C.2. BPS states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 C.3. Yau-Zaslow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curve Counting via Stable Pairs in the Derived Category

For a nonsingular projective 3-fold X , we define integer invariants virtually enumerating pairs (C,D) where C ⊂ X is an embedded curve and D ⊂ C is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of X . The resulting invariants are conjecturally equivalent, after universal transformations, to both the Gromov-Witten...

متن کامل

Double and Triple Givental’s J -functions for Stable Quotients Invariants

We use mirror formulas for the stable quotients analogue of Givental’s J-function for twisted projective invariants obtained in a previous paper to obtain mirror formulas for the analogues of the double and triple Givental’s J-functions (with descendants at all marked points) in this setting. We then observe that the genus 0 stable quotients invariants need not satisfy the divisor, string, or d...

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Chamber Structure and Wallcrossing in the Adhm Theory of Curves Ii

This is the second part of a project concerning variation of stability and chamber structure for ADHM invariants of curves. Wallcrossing formulas for such invariants are derived using the theory of stack function RingelHall algebras constructed by Joyce and the theory of generalized DonaldsonThomas invariants of Joyce and Song. It is shown that these formulas imply the BPS rationality conjectur...

متن کامل

Higher Rank Stable Pairs on K3 Surfaces

We define and compute higher rank analogs of PandharipandeThomas stable pair invariants in primitive classes for K3 surfaces. Higher rank stable pair invariants for Calabi-Yau threefolds have been defined by Sheshmani [She11b, She11a] using moduli of pairs of the form On → F for F purely one-dimensional and computed via wall-crossing techniques. These invariants may be thought of as virtually c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009