Polynomial Interpolation Problem for Skew Polynomials
نویسنده
چکیده
Let R = K[x;σ] be a skew polynomial ring over a division ring K. We introduce the notion of derivatives of skew polynomial at scalars. An analogous definition of derivatives of commutative polynomials from K[x] as a function of K[x] → K[x] is not possible in a non-commutative case. This is the reason why we have to define the derivative of a skew polynomial at a scalar. Our definition is based on properties of skew polynomial rings, and it makes possible some useful theorems about them. The main result of this paper is a generalization of polynomial interpolation problem for skew polynomials. We present conditions under which there exists a unique polynomial of a degree less then n which takes prescribed values at given points xi ∈ K (1 ≤ n). We also discuss some kind of Silvester-Lagrange skew polynomial.
منابع مشابه
gH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملFast Operations on Linearized Polynomials and their Applications in Coding Theory
This paper considers fast algorithms for operations on linearized polynomials. We propose a new multiplication algorithm for skew polynomials (a generalization of linearized polynomials) which has sub-quadratic complexity in the polynomial degree s, independent of the underlying field extension degree m. We show that our multiplication algorithm is faster than all known ones when s ≤ m. Using a...
متن کاملBivariate Lagrange Interpolation at the Chebyshev Nodes
We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...
متن کاملInterpolation of the tabular functions with fuzzy input and fuzzy output
In this paper, rst a design is proposed for representing fuzzy polynomials withinput fuzzy and output fuzzy. Then, we sketch a constructive proof for existenceof such polynomial which can be fuzzy interpolation polynomial in a set given ofdiscrete points rather than a fuzzy function. Finally, to illustrate some numericalexamples are solved.
متن کاملA Riemann-hilbert Problem for Skew-orthogonal Polynomials
Abstract. We find a local (d + 1)× (d + 1) Riemann-Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of the Gaussian Orthogonal Ensemble of random matrices with a potential function of degree d. Our Riemann-Hilbert problem is similar to a local d × d RiemannHilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polyno...
متن کامل