Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits
نویسندگان
چکیده
How different is local cortical circuitry from a random network? To answer this question, we probed synaptic connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed previous reports that bidirectional connections are more common than expected in a random network. We found that several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should be investigated further.
منابع مشابه
Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits
Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical cluste...
متن کاملCortical Circuits from Scratch: A Metaplastic Architecture for the Emergence of Lognormal Firing Rates and Realistic Topology
Our current understanding of neuroplasticity paints a picture of a complex interconnected system of dependent processes which shape cortical structure so as to produce an efficient information processing system. Indeed, the cooperation of these processes is associated with robust, stable, adaptable networks with characteristic features of activity and synaptic topology. However, combining the a...
متن کاملCorrection: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits
Glucocorticoid-induced leucine zipper (GILZ) is a 137 amino acid protein, rapidly induced by treatment with glucocorticoids (GC), characterized by a leucine zipper (LZ) domain (76–97 aminoacids), anN-terminal domain (1–75 amino acids) and a C-terminal PER domain (98–137 amino acids) rich in proline and glutamic acid residues. We have previously shown that GILZ binds to and inhibits NF-kB activi...
متن کاملLocal potential connectivity in cat primary visual cortex.
Time invariant description of synaptic connectivity in cortical circuits may be precluded by the ongoing growth and retraction of dendritic spines accompanied by the formation and elimination of synapses. On the other hand, the spatial arrangement of axonal and dendritic branches appears stable. This suggests that an invariant description of connectivity can be cast in terms of potential synaps...
متن کاملImbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits
Understanding the relationship between external stimuli and the spiking activity of cortical populations is a central problem in neuroscience. Dense recurrent connectivity in local cortical circuits can lead to counterintuitive response properties, raising the question of whether there are simple arithmetical rules for relating circuits' connectivity structure to their response properties. One ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005