Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation

نویسندگان

  • Antti Ahola
  • Anna L Kiviaho
  • Kim Larsson
  • Markus Honkanen
  • Katriina Aalto-Setälä
  • Jari Hyttinen
چکیده

BACKGROUND The functionality of a cardiomyocyte is primarily measured by analyzing the electrophysiological properties of the cell. The analysis of the beating behavior of single cardiomyocytes, especially ones derived from stem cells, is challenging but well warranted. In this study, a video-based method that is non-invasive and label-free is introduced and applied for the study of single human cardiomyocytes derived from induced pluripotent stem cells. METHODS The beating of dissociated stem cell-derived cardiomyocytes was visualized with a microscope and the motion was video-recorded. Minimum quadratic difference, a digital image correlation method, was used for beating analysis with geometrical sectorial cell division and radial/tangential directions. The time series of the temporal displacement vector fields of a single cardiomyocyte was computed from video data. The vector field data was processed to obtain cell-specific, contraction-relaxation dynamics signals. Simulated cardiomyocyte beating was used as a reference and the current clamp of real cardiomyocytes was used to analyze the electrical functionality of the beating cardiomyocytes. RESULTS Our results demonstrate that our sectorized image correlation method is capable of extracting single cell beating characteristics from the video data of induced pluripotent stem cell-derived cardiomyocytes that have no clear movement axis, and that the method can accurately identify beating phases and time parameters. CONCLUSION Our video analysis of the beating motion of single human cardiomyocytes provides a robust, non-invasive and label-free method to analyze the mechanobiological functionality of cardiomyocytes derived from induced pluripotent stem cells. Thus, our method has potential for the high-throughput analysis of cardiomyocyte functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors

Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...

متن کامل

Generation and Characterization of Functional Cardiomyocytes Derived from Human T Cell-Derived Induced Pluripotent Stem Cells

Induced pluripotent stem cells (iPSCs) have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs) that uses a minimally invasive app...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Endothelin‐1 Induces Myofibrillar Disarray and Contractile Vector Variability in Hypertrophic Cardiomyopathy–Induced Pluripotent Stem Cell–Derived Cardiomyocytes

BACKGROUND Despite the accumulating genetic and molecular investigations into hypertrophic cardiomyopathy (HCM), it remains unclear how this condition develops and worsens pathologically and clinically in terms of the genetic-environmental interactions. Establishing a human disease model for HCM would help to elucidate these disease mechanisms; however, cardiomyocytes from patients are not easi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014