Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm.
نویسندگان
چکیده
Microstructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various As(38)Se(62) chalcogenide microstructured fibers have been prepared in order to combine large non linear index of these glasses with the mode control offered by MOF structures. Small core fibers have been drawn to enhance the non linearities. In one of these, three Stokes order have been generated by Raman scattering in a suspended core MOF pumped at 1995 nm.
منابع مشابه
Linear and nonlinear optical properties of chalcogenide microstructured optical fibers
Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1....
متن کاملStrong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers.
We report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 microm, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 microm. By pumping the fibers at 1.55 microm, strong...
متن کاملFourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm.
Cascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450 nm is demonstrated using a nanosecond pump at 1995 nm in a low-loss As(38)Se(62) suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11 W, and only 3 W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.6±0.5)×10(-11) ...
متن کاملChalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared.
A new type of microstructured fiber for mid-infrared light is introduced. The chalcogenide glass-based microporous fiber allows extensive dispersion engineering that enables design of flattened waveguide dispersion windows and multiple zero-dispersion points - either blue-shifted or red-shifted from the bulk material zero-dispersion point - including the spectral region of CO(2) laser lines app...
متن کاملCasting method for producing low-loss chalcogenide microstructured optical fibers.
We report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 18 25 شماره
صفحات -
تاریخ انتشار 2010