Exploiting Aging Benefits for the Design of Reliable Drowsy Cache Memories
نویسندگان
چکیده
In this paper, we show how beneficial effects of aging on static power consumption can be exploited to design reliable drowsy cache memories adopting dynamic voltage scaling (DVS) to reduce static power. First, we develop an analytical model allowing designers to evaluate the long-term threshold voltage degradation induced by bias temperature instability (BTI) in a drowsy cache memory. Through HSPICE simulations, we demonstrate that, as drowsy memories age, static power reduction techniques based on DVS become more effective because of reduction in sub-threshold current due to BTI aging. We develop a simulation framework to evaluate trade-offs between static power and reliability, and a methodology to properly select the “drowsy” data retention voltage. We then propose different architectures of a drowsy cache memory allowing designers to meet different power and reliability constraints. The performed HSPICE simulations show a soft error rate and static noise margin improvement up to 20.8% and 22.7%, respectively, compared to standard aging unaware drowsy technique. This is achieved with a limited static power increase during the very early lifetime, and with static energy saving of up to 37% in 10 years of operation, at no or very limited hardware overhead.
منابع مشابه
Adaptive cache decay
Leakage power in data cache memories represents a sizable fraction of total power consumption, and many techniques have been proposed to reduce it. Previous techniques put unused lines for example to drowsy state or switch them off completely (cache decay) in order to save power. Our idea is to adaptively select mostly used cache lines. We found that this can be achieved automatically by using ...
متن کاملDrowsy Caches
On-chip caches represent a sizable fraction of the total power consumption of microprocessors. Although large caches can significantly improve performance, they have the potential to increase power consumption. As feature sizes shrink, the dominant component of this power loss will be leakage. However, during a fixed period of time the activity in a cache is only centered on a small subset of t...
متن کاملReduction in Cache Memory Power Consumption based on Replacement Quantity
Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...
متن کاملReduction in Cache Memory Power Consumption based on Replacement Quantity
Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...
متن کاملComparison of State-Preserving vs. Non-State-Preserving Leakage Control in Caches
This paper compares the effectiveness of state-preserving and non-state-preserving techniques for leakage control in caches by comparing drowsy cache and gated-V for data caches using 70nm technology parameters. To perform the comparison, we use “HotLeakage”, a new architectural model for subthreshold and gate leakage that explicitly models the effects of temperature, voltage, and parameter var...
متن کامل