Nonconvex Semi-linear Problems and Canonical Duality Solutions
نویسنده
چکیده
This paper presents a brief review and some new developments on the canonical duality theory with applications to a class of variational problems in nonconvex mechanics and global optimization. These nonconvex problems are directly related to a large class of semi-linear partial differential equations in mathematical physics including phase transitions, post-buckling of large deformed beam model, chaotic dynamics, nonlinear field theory, and superconductivity. Numerical discretizations of these equations lead to a class of very difficult global minimization problems in finite dimensional space. It is shown that by the use of the canonical dual transformation, these nonconvex constrained primal problems can be converted into certain very simple canonical dual problems. The criticality condition leads to dual algebraic equations which can be solved completely. Therefore, a complete set of solutions to these very difficult primal problems can be obtained. The extremality of these solutions are controlled by the so-called triality theory. Several examples are illustrated including the nonconvex constrained quadratic programming. Results show that these very difficult primal problems can be converted into certain simple canonical (either convex or concave) dual problems, which can be solved completely. Also some very interesting new phenomena, i.e. trio-chaos and meta-chaos, are discovered in post-buckling of nonconvex systems. The author believes that these important phenomena exist in many nonconvex dynamical systems and deserve to have a detailed study.
منابع مشابه
Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality
Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...
متن کاملSolutions to quadratic minimization problems with box and integer constraints
This paper presents a canonical duality theory for solving quadratic minimization problems subjected to either box or integer constraints. Results show that under Gao and Strang’s general global optimality condition, these well-known nonconvex and discrete problems can be converted into smooth concave maximization dual problems over closed convex feasible spaces without duality gap, and can be ...
متن کاملCanonical Duality Theory: Connections between nonconvex mechanics and global optimization
This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...
متن کاملCanonical Duality Theory and Solutions to Constrained Nonconvex Quadratic Programming
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points ...
متن کاملSolutions and optimality criteria for nonconvex quadratic-exponential minimization problem
This paper presents a set of complete solutions and optimality conditions for a nonconvex quadratic-exponential optimization problem. By using the canonical duality theory developed by the first author, the nonconvex primal problem in n-dimensional space can be converted into an one-dimensional canonical dual problem with zero duality gap, which can be solved easily to obtain all dual solutions...
متن کامل