Effective elastic modulus of isolated gecko setal arrays.
نویسندگان
چکیده
Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.
منابع مشابه
Ancestrally high elastic modulus of gecko setal b-keratin
Typical bulk adhesives are characterized by soft, tacky materials with elastic moduli well below 1 MPa. Geckos possess subdigital adhesives composed mostly of b-keratin, a relatively stiff material. Biological adhesives like those of geckos have inspired empirical and modelling research which predicts that even stiff materials can be effective adhesives if they take on a fibrillar form. The mol...
متن کاملAncestrally high elastic modulus of gecko setal beta-keratin.
Typical bulk adhesives are characterized by soft, tacky materials with elastic moduli well below 1MPa. Geckos possess subdigital adhesives composed mostly of beta-keratin, a relatively stiff material. Biological adhesives like those of geckos have inspired empirical and modelling research which predicts that even stiff materials can be effective adhesives if they take on a fibrillar form. The m...
متن کاملMicroscopic modeling of the dynamics of frictional adhesion in the gecko attachment system.
We present a simple microscopic model describing the unique friction behavior of gecko setal arrays as they are dragged on smooth surfaces. Unlike other solids of high elastic modulus that do not stick under van der Waals forces alone, the gecko setal arrays do not require a compressive force to display a drag resistance but rather develop a tensile normal force when they are dragged (J. Experi...
متن کاملUsing Setal Micromechanics to Predict Gecko Adhesive Performance
INTRODUCTION The fibrillar adhesive toe pads of geckos enable extraordinary climbing abilities via strong attachment and rapid detachment. Previous research using a single species, Gekko gecko, proposed that the adhesive system could be modeled as an array of cantilever beam-like elements. In this study, we examined the similarities and differences in setal morphology and performance between Ge...
متن کاملTowards friction and adhesion from high modulus microfiber arrays
Unlike traditional pressure sensitive adhesives, the natural setal arrays of gecko lizards achieve dry adhesion with stiff, keratinous material. This remarkable property has inspired a new class of adhesive and high friction microstructures composed of stiff materials that, like natural setae, have an elastic modulus greater than 1 GPa. In contrast to softer materials, such as rubber and low mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 18 شماره
صفحات -
تاریخ انتشار 2006