High-resolution X-ray diffraction analysis of strain distribution in GaN nanowires on Si(111) substrate

نویسندگان

  • Hryhorii Stanchu
  • Vasyl Kladko
  • Andrian V Kuchuk
  • Nadiia Safriuk
  • Alexander Belyaev
  • Aleksandra Wierzbicka
  • Marta Sobanska
  • Kamil Klosek
  • Zbigniew R Zytkiewicz
چکیده

In this work, the influence of micro- and macro-deformation profiles in GaN nanowires (NWs) on the angular intensity distribution of X-ray diffraction are studied theoretically. The calculations are performed by using kinematical theory of X-ray diffraction and assuming the deformation decays exponentially from the NW/substrate interface. Theoretical modeling of X-ray scattering from NWs with different deformation profiles are carried out. We show that the shape of the (002) 2θ/ω X-ray diffraction profile (XDP) is defined by initial deformation at the NW's bottom and its relaxation depth given by the decay depth of the exponential deformation profile. Also, we demonstrate that macro-deformation leads to XDP shift, whereas micro-deformations are the cause of XDP's asymmetry and its symmetrical broadening. A good correlation between calculated and experimental XDP from self-assembled GaN NWs on Si(111) substrate was achieved by taking into account all parameters of micro- and macro-deformation profiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macro- and micro-strain in GaN nanowires on Si(111).

We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from ± (0.015)% to ± (0.03)%. This micro-strain contributes to the line...

متن کامل

Synthesis of Serrated GaN Nanowires for Hydrogen Gas Sensors Applications by Plasma-Assisted Vapor Phase Deposition Method

Nowadays, the semiconductor nanowires (NWs) typically used in hydrogen gas sensors. Gallium nitride (GaN) with a wide band gap of 3.4 eV, is one of the best semiconductors for this function. NWs surface roughness have important role in gas sensors performance. In this research, GaN NWs have been synthesized on Si substrate by plasma-assisted vapor phase deposition at different deposition time, ...

متن کامل

Synthesis and Characterization of Glomerate GaN Nanowires

Glomerate GaN nanowires were synthesized on Si(111) substrates by annealing sputtered Ga(2)O(3)/Co films under flowing ammonia at temperature of 950 degrees C. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and Fourier transformed infrared spectra were used to characterize the morphology, crystallinity and microstructure of the as-synthesized s...

متن کامل

Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy.

We have performed a real-time in situ x-ray scattering study of the nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy on AlN(0001)/Si(111). The intensity variation of the GaN diffraction peak as a function of time was found to exhibit three different regimes: (i) the deposition of a wetting layer, which is followed by (ii) a supralinear regime assigned to nucleation of...

متن کامل

Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy.

We report self-induced growth of vertically aligned (i.e. along the [111] direction), free-standing InAs nanowires on Si(111) substrates by solid-source molecular beam epitaxy. Implementation of an ultrathin amorphous SiO(x) mask on Si(111) facilitated epitaxial InAs nanowire growth, as confirmed by high-resolution x-ray diffraction 2theta-omega scans and transmission electron microscopy. Depen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015