Genotypic discrepancies arising from imputation
نویسندگان
چکیده
The ideal genetic analysis of family data would include whole genome sequence on all family members. A strategy of combining sequence data from a subset of key individuals with inexpensive, genome-wide association study (GWAS) chip genotypes on all individuals to infer sequence level genotypes throughout the families has been suggested as a highly accurate alternative. This strategy was followed by the Genetic Analysis Workshop 18 data providers. We examined the quality of the imputation to identify potential consequences of this strategy by comparing discrepancies between GWAS genotype calls and imputed calls for the same variants. Overall, the inference and imputation process worked very well. However, we find that discrepancies occurred at an increased rate when imputation was used to infer missing data in sequenced individuals. Although this may be an artifact of this particular instantiation of these analytic methods, there may be general genetic or algorithmic reasons to avoid trying to fill in missing sequence data. This is especially true given the risk of false positives and reduction in power for family-based transmission tests when founders are incorrectly imputed as heterozygotes. Finally, we note a higher rate of discrepancies when unsequenced individuals are inferred using sequenced individuals from other pedigrees drawn from the same admixed population.
منابع مشابه
Single versus multiple imputation for genotypic data
Due to the growing need to combine data across multiple studies and to impute untyped markers based on a reference sample, several analytical tools for imputation and analysis of missing genotypes have been developed. Current imputation methods rely on single imputation, which ignores the variation in estimation due to imputation. An alternative to single imputation is multiple imputation. In t...
متن کاملEffect of Reference Population Size and Imputation Methods on the Accuracy of Imputation in Pure and Mixed Populations
Imputation as a method of creating low-density chips to high-density chips has been introduced to increase the accuracy of genomic selection in animals. In the current study, to investing imputation accuracy, three populations of mixed (scenario 1), pure (scenario 2) and mixed + pure (scenario 3) were simulated using QMSim. Two methods of imputation including Beagle and Flmpute were used fo...
متن کاملImputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملMultiple Imputation of Item Scores in Test and Questionnaire Data, and Influence on Psychometric Results.
The performance of five simple multiple imputation methods for dealing with missing data were compared. In addition, random imputation and multivariate normal imputation were used as lower and upper benchmark, respectively. Test data were simulated and item scores were deleted such that they were either missing completely at random, missing at random, or not missing at random. Cronbach's alpha,...
متن کاملEstimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کامل