Towards a Physarum learning chip
نویسندگان
چکیده
Networks of protoplasmic tubes of organism Physarum polycehpalum are macro-scale structures which optimally span multiple food sources to avoid repellents yet maximize coverage of attractants. When data are presented by configurations of attractants and behaviour of the slime mould is tuned by a range of repellents, the organism preforms computation. It maps given data configuration into a protoplasmic network. To discover physical means of programming the slime mould computers we explore conductivity of the protoplasmic tubes; proposing that the network connectivity of protoplasmic tubes shows pathway-dependent plasticity. To demonstrate this we encourage the slime mould to span a grid of electrodes and apply AC stimuli to the network. Learning and weighted connections within a grid of electrodes is produced using negative and positive voltage stimulation of the network at desired nodes; low frequency (10 Hz) sinusoidal (0.5 V peak-to-peak) voltage increases connectivity between stimulated electrodes while decreasing connectivity elsewhere, high frequency (1000 Hz) sinusoidal (2.5 V peak-to-peak) voltage stimulation decreases network connectivity between stimulated electrodes. We corroborate in a particle model. This phenomenon may be used for computation in the same way that neural networks process information and has the potential to shed light on the dynamics of learning and information processing in non-neural metazoan somatic cell networks.
منابع مشابه
Physarum Chip: Developments in growing computers from slime mould
The Phychip project is a collaborative European research initiative to design and implement computation using the organism Physarum polycephalum; it is funded by the Seventh Framework Programme (FP7) by the European Commission within CORDIS and the FET Proactive scheme. Included in this abstract are details the development of a Physarum based biosensor and biological logic gate, offering signif...
متن کاملPhysarum wires: Self-growing self-repairing smart wires made from slime mould
We report experimental laboratory studies on developing conductive pathways, or wires, using protoplasmic tubes of plasmodium of acellular slime mould Physarum polycephalum. Given two pins to be connected by a wire, we place a piece of slime mould on one pin and an attractant on another pin. Physarum propagates towards the attract and thus connects the pins with a protoplasmic tube. A protoplas...
متن کاملTowards Physarum robots: computing and manipulating on water surface
Plasmodium of Physarym polycephalum is an ideal biological substrate for implementing concurrent and parallel computation, including combinatorial geometry and optimization on graphs. We report results of scoping experiments on Physarum computing in conditions of minimal friction, on the water surface. We show that plasmodium of Physarum is capable for computing a basic spanning trees and manip...
متن کاملTowards an Object-Oriented Programming Language for Physarum Polycephalum Computing
In the paper, we present foundations of a new object-oriented programming language for Physarum polycephalum computing. Both, theoretical foundations and assumptions for a language specification are considered. Physarum polycephalum is a one-cell organism. In the phase of plasmodium, its behavior can be regarded as a biological substrate that implements the Kolmogorov-Uspensky machine which is ...
متن کاملTowards Physarum binary adders
Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al. (2004) experimentally demonstrated that basic logical gates can be implemented in forag...
متن کامل