Phosphorylation of a UDP-glucuronosyltransferase regulates substrate specificity.

نویسندگان

  • Nikhil K Basu
  • Martina Kovarova
  • Amanda Garza
  • Shigeki Kubota
  • Tapas Saha
  • Partha S Mitra
  • Rajat Banerjee
  • Juan Rivera
  • Ida S Owens
چکیده

UDP-glucuronosyltransferase (UGT) isozymes catalyze detoxification of numerous chemical toxins present in our daily diet and environment by conjugation to glucuronic acid. The special properties and enzymatic mechanism(s) that enable endoplasmic reticulum-bound UGT isozymes to convert innumerable structurally diverse lipophiles to excretable glucuronides are unknown. Inhibition of cellular UGT1A7 and UGT1A10 activities and of [33P]orthophosphate incorporation into immunoprecipitable proteins after exposure to curcumin or calphostin-C indicated that the isozymes are phosphorylated. Furthermore, inhibition of UGT phosphorylation and activity by treatment with PKCepsilon-specific inhibitor peptide supported PKC involvement. Co-immunoprecipitation, colocalization by means of immunofluorescence, and cross-linking studies of PKCepsilon and UGT1A7His revealed that the proteins reside within 11.4 angstroms of each other. Moreover, mutation of three PKC sites in each UGT isozyme demonstrated that T73A/G and T202A/G caused null activity, whereas S432G-UGT1A7 caused a major shift of its pH-8.5 optimum to 6.4 with new substrate selections, including 17beta-estradiol. S432G-UGT1A10 exhibited a minor pH shift without substrate alterations. PKCepsilon involvement was confirmed by the demonstration that PKCepsilon overexpression enhanced activity of UGT1A7 but not of its S432 mutant and the conversion of 17beta-[14C]estradiol by S432G-UGT1A7 but not by UGT1A7. Consistent with these observations, treatment of UGT1A7-transfected cells with PKCepsilon-specific inhibitor peptide or general PKC inhibitors increased 17beta-estradiol catalysis between 5- and 11-fold, with parallel decreases in phosphoserine-432. Here, we report a mechanism involving PKC-mediated phosphorylation of UGT such that phosphoserine/threonine regulates substrate specificity in response to chemical exposures, which possibly confers survival benefit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells.

A rat kidney phenol UDP-glucuronosyltransferase cDNA was used to isolate a human liver phenol UDP-glucuronosyltransferase cDNA by screening of a human liver cDNA library in the expression vector lambda gt11. The 2.4-kilobase cDNA contained an open reading frame of 1593 base pairs coding for a protein of 531 residues. The human liver cDNA was subcloned into the vector pKCRH2. Transfection of thi...

متن کامل

Simultaneous expression of guinea pig UDP-glucuronosyltransferase 2B21 and 2B22 in COS-7 cells enhances UDP-glucuronosyltransferase 2B21-catalyzed morphine-6-glucuronide formation.

Although UDP-glucuronosyltransferases (UGTs) act as an important detoxification system for many endogenous and exogenous compounds, they are also involved in the metabolic activation of morphine to form morphine-6-glucuronide (M-6-G). The cDNAs encoding guinea pig liver UGT2B21 and UGT2B22, which are intimately involved in M-6-G formation, have been cloned and characterized. Although some evide...

متن کامل

Key amino acid residues responsible for the differences in substrate specificity of human UDP-glucuronosyltransferase (UGT)1A9 and UGT1A8.

Human UDP-glucuronosyltransferase (UGT)1A9 is one of the major isoforms in liver and extrahepatic tissues, catalyzing the glucuronidation of a variety of drugs, dietary constituents, steroids, fatty acids, and bile acids. UGT1A9 shows high amino acid homology with UGT1A7, UGT1A8, and UGT1A10 with overlapping substrate specificity. However, the affinities for substrates are different among them....

متن کامل

Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity and involvement in steroid and xenobiotic glucuronidation.

A cloned human bilirubin UDP-glucuronosyltransferase (UGT) stably expressed in Chinese hamster V79 cells was used to assess the substrate specificity of the enzyme. The catalytic potential (Vmax/Km(bilirubin) of the enzyme with UDP-glucuronic acid (UDPGA) was 2-fold and 10-fold greater than that for UDP-xylose and UDP-glucose respectively. The formation of bilirubin mono- and di-conjugates was ...

متن کامل

Characterization of the zebrafish Ugt repertoire reveals a new class of drug-metabolizing UDP glucuronosyltransferases.

The zebrafish genome contains a gene superfamily of 40 Ugt genes that can be divided into Ugt1, Ugt2, and Ugt5 families. Because the encoded zebrafish UDP glucuronosyltransferase (UGT) proteins do not display orthologous relationships to any of the mammalian and avian UGT enzymes based on molecular phylogeny, it is difficult to predict their substrate specificity. Here, we mapped their tissue-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 18  شماره 

صفحات  -

تاریخ انتشار 2005